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Real tokamaks are not toroidally symmetric. A transport theory has been developed
for large aspect ratio tokamaks with broken symmetry [1]. The theoretical predictions are in
agreement with numerical results in the ¢ < 1 limit, with ¢, the inverse aspect ratio [2.3]. The
theory hasbeen extended to include effects of finite ¢, and finite 8 [4,5], with B, the ratio of
the plasma pressure to magnetic field pressure. However, there are cases where the radial
wavelength of the perturbed magnetic field can be comparable to g’ 2ppi, the width of the
bananas [6], where p, is the ion poloidal gyro-radius, the theory is further extended here to
accommodate those short wavelength modes. The relevant equation is the orbit averaged drift

kinetic equation to account for the physics of finite &' 2ppi in the low collisionality regimes.
The key assumptions are p /L < p, /L <1, but kx|V)d\/;Pp,. ~ 1, with p_, the ion gyro-
radius; L, the radial equilibrium scale length; kX, the radial wave vector of perturbed modes;

and y, the poloidal flux. The transport fluxes in th superbanana plateau regime are calculated
by solving the orbit averaged drift kinetic equation.

In Hamada coordinates, the magnetic field B = ¥/ VV xVO- ¥ VV x VE, where V is
the volume inside the magnetic surface, 6 is the poloidal angle, g is the toroidal angle, y'=
B+ V¢, v is the toroidal flux, = B * V6 and prime denotes d/dV . Also B=GVO + FV{

+ Vg, where F is the poloidal current outside a magnetic surface, G is the toroidal current
inside a magnetic surface, @ satisfiesB*Ve= B’ - <Bz>, and (*) denotes flux surface
average. The |B|=B spectrum on the perturbed magnetic surface can be written as B =
B,(V.0) - B, En [AH(V,H)coan0 +Bn(V,9)sinnC0], where B, is the axisymmetric magnetic

field strength, B, is B at the axis, §, = g0 -, q is the safety factor, and n, the toroidal mode

number. We assume that the magnitudes of A , and B, are too weak to trap particles,

however, allow the radial wavelength of A, ,and B, comparable to g 2ppi.



43'Y EPS Conference on Plasma Physics 04.122

When v,= qu/ (ve %) < 1, transport processes are dominated by the drift dynamics
of bananas wobbling off the magnetic surface. Here, R is the major radius, v, = W ,Tis
the temperature, and M is the mass. In ( Pr ,6,0,E, M) coordinates, the drift kinetic equation is

00f /06 + & of |95, + b, df [ap, = C(f), O]
where fis the particle distribution, p. = x - (F -dg/ &CO)V” / Q2, v, is the particle speed parallel
to B, € is the gyro-frequency, C ( f ) is the Coulomb collision operator, E = V2/ 2+ e®/M,
u=v / (ZB), v is the particle speed, @ is the electrostatic potential, e is the electric charge,
6 = (v”n+vd)' VO,n =B/B, v, = -vnx V(V”/Q) is the drift velocity, & = v, * V&, =
(vi/B) d(v,B x V& *V0/Q)[30 + [v,/(Qx)]d(v\B)/oV , p.= X v, *VV . and v, *VV =
[v” / (Q}()] 07(VHB) / d%, - Only the first order terms in p, / L ordering are kept in p. . Note that
v, inthe VV  and V{ directions are also valid for finite f plasmas [5,7].

We adopt the ordering where the bounce frequency w, is much larger than the drift
frequency w,, and collision frequency v. The leading order equation is 0 df,/d6 =0, where

fo= 1o ( PG E ,u) is the zeroth order distribution. The next order equation is

(vin+v,)* VO 3, /30+v, * VE o, /G +xX Ve * VV o, /op. = C(f,). )
Because f, is periodic, the following orbit averaged drift kinetic equation must be satisfied
(Vi * V&), #o) 05+ % (Var * VV),, o /P, = (C(1,)),, (3)

where <'>0b=gﬁd9(')B/wx’/gS dOB/wy  denotes the orbit average, and w =
(v”n + Vd) . VH/n * V6 .Because p, /L <1, w = v, in (*),,,and the difference between P:
and V on the equilibrium quantities is neglected.

We decompose A, and B, as (An Bn) = (AOn BOn) + (Aln BM), where A, and
B,, have radial variations of the order of L, and A,, and B,, have much shorter variations
than L. We express (Aln Bm) = EI(AW Blnl)eﬂk“C , where [ is a nonzero integer, and A,
and B,,, are Fourier coefficients. The contributions of A, and B, to fluxes can be found in
[1]. Here, we present fluxes caused by A, and B,,. In (pg,H,CO,E,M) s X = Pt

Ox Py ﬁK(Q) by neglecting d@/ds, , where o = sgn(v,), x =(V/Vt), A= uB,[E, p,, =

(Fv./2,) (B, /B, -1). @, = @(B,). K(6) = (B,/B)[¥* -(8/B, -1)/(8B, /B, -1)] . &
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= (1-2) / [A(BM /B, —1)], k> >1 for circulating particles, k> <1 for trapped particles, and
B,, and B, are respectively the maximum and minimum values of B,(V,0).

The toroidal drift frequency is <V . VCO>0b = cP/y +(MCE / e)() ¢ G(k), where ¢'=

de/dV is a normalization factor. The dimensionless resonance function G(k) is

G(k)= M’”" f "doK™'(0) [Z(Z—Z—l)(kz—%)(z—(Bf),/(2Bf))+%(Bf)’/(ZBf) :

X m

where w,, = 1/ f :’2 dOK'(0), the integration limits are turning points at which V”(H j) =0 for

j=land2,and y/x = <Bz>//<BZ> + 411:P’/<B2> -Fq X’/<B2>, and P is total pressure. The

(Voo VV), (McE/e)()E [ A= n51nn§0)+Bln,(ncosnn§))] “7c | wherew;, (A,, B,.)=

{ " doKk™(0) [-2.B,/B, +2(1- AB,/B, )| (B,/B,[ A,,(6) B,(0)] cos[lkprxﬁxK(e)]}.
Effects of finite &’ 2ppi appear in the argument of the cosine function.
We expand Eq.(3) using local transport ordering, ie., v ~<V . VCO>0b>
a® VV/(|VV|L). The leading order equation is <Vd . VCO>0b Hoo/ G = <C(f00)>0b, where

the second subscript denotes the ordering. The approximate solution is f,, = f), (V), a

Maxwellian distribution. The next order equation for f,, the correction to f, is

(Vi * V&), For/3GH+(V0 *VV),, 3 [0V = (C(fur)),, )

Because the width of orbits is finite, the definitions for transport fluxes become

- JES e e )

where I is the particle flux, g is the heat flux, and (')X denotes the flux surface and radial

(TevV),
(g vV/T),

averages. The radial average is performed over a region that is wider than &' 2ppi but

narrower than L. Because we order ¢, P, |V)(|~)»kx = 2m/ k, < |V)(|L, averaging over a region
. 1/2 . . —

wider than £'“p, is the same as averaging over a wavelength. Thus, we choose Ay = )ka

In the superbanana plateau regime, fluxes are dominated by the resonant particles that

have <Vd . VCO>0b =0. We expand f, = Enl(an, cosng +b, sinnCo)eﬂk"p@ ,and approximate

<C ( f01)>0b= - v f,;» where a,, and b, are Fourier coefficients. Substituting f,, into Eq.(4),
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and taking |vex'/ (McEs’)| — 0 limit yield the resonant part of the Fourier coefficients: (an,)r
=- R, (McE/eX)nl_?ln, dfy /JV ,and (bnl)r =R, (McE/eX)nZW Wy /dV, where R =

() [o(x* - 12) o :| et )

angle parameter at which <V . V‘go> = 0. Using resonant part of f;, in Eq.(5) yields

ob

], 0 is the delta function, and kf is the resonant pitch

<F'VV>X Nv: Mc |\ p e®) (m)\T
(@I, | el e/ RS R G

where N is density, and p is plasma pressure. The coefficients 7, for j =1 -3 in Eq.(6) are

St (2 =502) e [1443(B,, /B 1)]'2 [ a0 4B/, x

= x| x” - e -

LR e [k -(8/8,-1)/(8, /B, -1)]
Al +[BF) . Jloc o). @

where quantities with the subscript k’ are evaluated at resonantk’. Superbanana plateau

resonance can occur only for particles that have normalized speed greater thanx . [1]. The

min [

lower limit x_,, in Eq.(7) depends on sign of the parameter o,,; oy, ,= +1 if ® and e have

the same signs, otherwise o,,,=-1.1f o,,,= 1, G(k) must be negative to have the resonance,

and x> = 2(c|<I)’|/X)(|e|;(/Mc)(er’)_l|Gm(k)|_1, with G, (k), the global minimum of G(k). If

-1

9

0,.,= -1, G(k) must be positive to resonate, and xfmn=2(C|CI)’|/)()(|6|X/MC)(st’)_1|GM (k)

with G,, (k), the global maximum of G(k).
In conclusion, short wavelength variations of the magnetic perturbations are

smoothed out by finite values of &' 2ppi. The radial profile for fluxes varies on the equilibrium

scale, consistent with results in [6]. The theory can be extended for energetic alpha particles.
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