

Transport theory with effects of finite banana width in tokamaks with broken symmetry*

K. C. Shaing¹ and S. A. Sabbagh²

¹*Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan 70101 Taiwan, Republic of China*

²*Department of Applied Physics, Columbia University, New York, NY 10027 USA*

Real tokamaks are not toroidally symmetric. A transport theory has been developed for large aspect ratio tokamaks with broken symmetry [1]. The theoretical predictions are in agreement with numerical results in the $\varepsilon < 1$ limit, with ε , the inverse aspect ratio [2.3]. The theory has been extended to include effects of finite ε , and finite β [4,5], with β , the ratio of the plasma pressure to magnetic field pressure. However, there are cases where the radial wavelength of the perturbed magnetic field can be comparable to $\varepsilon^{1/2} \rho_{pi}$, the width of the bananas [6], where ρ_{pi} is the ion poloidal gyro-radius, the theory is further extended here to accommodate those short wavelength modes. The relevant equation is the orbit averaged drift kinetic equation to account for the physics of finite $\varepsilon^{1/2} \rho_{pi}$ in the low collisionality regimes.

The key assumptions are $\rho_i/L < \rho_{pi}/L < 1$, but $k_\chi |\nabla \chi| \sqrt{\varepsilon} \rho_{pi} \sim 1$, with ρ_i , the ion gyro-radius; L , the radial equilibrium scale length; k_χ , the radial wave vector of perturbed modes; and χ , the poloidal flux. The transport fluxes in the superbanana plateau regime are calculated by solving the orbit averaged drift kinetic equation.

In Hamada coordinates, the magnetic field $\mathbf{B} = \psi' \nabla V \times \nabla \theta - \chi \nabla V \times \nabla \xi$, where V is the volume inside the magnetic surface, θ is the poloidal angle, ξ is the toroidal angle, $\psi' = \mathbf{B} \cdot \nabla \xi$, ψ is the toroidal flux, $\chi = \mathbf{B} \cdot \nabla \theta$, and prime denotes d/dV . Also $\mathbf{B} = G \nabla \theta + F \nabla \xi + \nabla \varphi$, where F is the poloidal current outside a magnetic surface, G is the toroidal current inside a magnetic surface, φ satisfies $\mathbf{B} \cdot \nabla \varphi = B^2 - \langle B^2 \rangle$, and $\langle \bullet \rangle$ denotes flux surface average. The $|\mathbf{B}|=B$ spectrum on the perturbed magnetic surface can be written as $B = B_s(V, \theta) - B_0 \sum_n [A_n(V, \theta) \cos n \xi_0 + B_n(V, \theta) \sin n \xi_0]$, where B_s is the axisymmetric magnetic field strength, B_0 is B at the axis, $\xi_0 = q\theta - \xi$, q is the safety factor, and n , the toroidal mode number. We assume that the magnitudes of A_n , and B_n are too weak to trap particles, however, allow the radial wavelength of A_n , and B_n comparable to $\varepsilon^{1/2} \rho_{pi}$.

When $\nu_* = vRq/(v_\parallel \epsilon^{3/2}) < 1$, transport processes are dominated by the drift dynamics of bananas wobbling off the magnetic surface. Here, R is the major radius, $v_t = \sqrt{2T/M}$, T is the temperature, and M is the mass. In $(p_\xi, \xi_0, \theta, E, \mu)$ coordinates, the drift kinetic equation is

$$\dot{\theta} \partial f / \partial \theta + \dot{\xi}_0 \partial f / \partial \xi_0 + \dot{p}_\xi \partial f / \partial p_\xi = C(f), \quad (1)$$

where f is the particle distribution, $p_\xi = \chi \cdot (F - \partial \varphi / \partial \xi_0) v_\parallel / \Omega$, v_\parallel is the particle speed parallel to \mathbf{B} , Ω is the gyro-frequency, $C(f)$ is the Coulomb collision operator, $E = v^2/2 + e\Phi/M$, $\mu = v_\perp^2/(2B)$, v is the particle speed, Φ is the electrostatic potential, e is the electric charge, $\dot{\theta} = (v_\parallel \mathbf{n} + \mathbf{v}_d) \cdot \nabla \theta$, $\mathbf{n} = \mathbf{B}/B$, $\mathbf{v}_d = -v_\parallel \mathbf{n} \times \nabla(v_\parallel/\Omega)$ is the drift velocity, $\dot{\xi}_0 = \mathbf{v}_d \cdot \nabla \xi_0 = (v_\parallel/B) \partial(v_\parallel \mathbf{B} \times \nabla \xi_0 \cdot \nabla \theta / \Omega) / \partial \theta + [v_\parallel / (\Omega \chi)] \partial(v_\parallel B) / \partial V$, $\dot{p}_\xi = \chi \mathbf{v}_{d1} \cdot \nabla V$, and $\mathbf{v}_{d1} \cdot \nabla V = [v_\parallel / (\Omega \chi)] \partial(v_\parallel B) / \partial \xi_0$. Only the first order terms in ρ_{p_i}/L ordering are kept in \dot{p}_ξ . Note that \mathbf{v}_d in the ∇V and $\nabla \xi_0$ directions are also valid for finite β plasmas [5,7].

We adopt the ordering where the bounce frequency ω_b is much larger than the drift frequency ω_d , and collision frequency ν . The leading order equation is $\dot{\theta} \partial f_0 / \partial \theta = 0$, where $f_0 = f_0(p_\xi, \xi_0, E, \mu)$ is the zeroth order distribution. The next order equation is

$$(v_\parallel \mathbf{n} + \mathbf{v}_d) \cdot \nabla \theta \partial f_1 / \partial \theta + \mathbf{v}_d \cdot \nabla \xi_0 \partial f_0 / \partial \xi_0 + \chi \mathbf{v}_{d1} \cdot \nabla V \partial f_0 / \partial p_\xi = C(f_0). \quad (2)$$

Because f_1 is periodic, the following orbit averaged drift kinetic equation must be satisfied

$$\langle \mathbf{v}_d \cdot \nabla \xi_0 \rangle_{ob} \partial f_0 / \partial \xi_0 + \chi \langle \mathbf{v}_{d1} \cdot \nabla V \rangle_{ob} \partial f_0 / \partial p_\xi = \langle C(f_0) \rangle_{ob}, \quad (3)$$

where $\langle \bullet \rangle_{ob} = \oint d\theta (\bullet) B / \omega \chi / \oint d\theta B / \omega \chi$ denotes the orbit average, and $\omega = (v_\parallel \mathbf{n} + \mathbf{v}_d) \cdot \nabla \theta / \mathbf{n} \cdot \nabla \theta$. Because $\rho_{p_i}/L < 1$, $\omega \approx v_\parallel$ in $\langle \bullet \rangle_{ob}$, and the difference between p_ξ and V on the equilibrium quantities is neglected.

We decompose A_n and B_n as $(A_n \ B_n) = (A_{0n} \ B_{0n}) + (A_{1n} \ B_{1n})$, where A_{0n} and B_{0n} have radial variations of the order of L , and A_{1n} and B_{1n} have much shorter variations than L . We express $(A_{1n} \ B_{1n}) = \sum_l (A_{1nl} \ B_{1nl}) e^{ilk\chi}$, where l is a nonzero integer, and A_{1nl} and B_{1nl} are Fourier coefficients. The contributions of A_{0n} and B_{0n} to fluxes can be found in [1]. Here, we present fluxes caused by A_{1n} and B_{1n} . In $(p_\xi, \theta, \xi_0, E, \mu)$, $\chi = p_\xi + \sigma x \rho_{b\chi} \sqrt{\lambda} K(\theta)$ by neglecting $\partial \varphi / \partial \xi_0$, where $\sigma = \text{sgn}(v_\parallel)$, $x = (v/v_t)$, $\lambda = \mu B_m / E$, $\rho_{b\chi} = (F v_t / \Omega_m) \sqrt{(B_M/B_m - 1)}$, $\Omega_m = \Omega(B_m)$, $K(\theta) = (B_m/B) [k^2 - (B/B_m - 1) / (B_M/B_m - 1)]^{1/2}$, k^2

$= (1 - \lambda)/[\lambda(B_M/B_m - 1)]$, $k^2 > 1$ for circulating particles, $k^2 < 1$ for trapped particles, and B_M and B_m are respectively the maximum and minimum values of $B_s(V, \theta)$.

The toroidal drift frequency is $\langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} = c\Phi'/\chi + (McE/e\chi) \varepsilon' G(k)$, where $\varepsilon' = d\varepsilon/dV$ is a normalization factor. The dimensionless resonance function $G(k)$ is

$$G(k) = \frac{\lambda \omega_{nb}}{\varepsilon'} \int_{\theta_{t1}}^{\theta_{t2}} d\theta K^{-1}(\theta) \left[2 \left(\frac{B_M}{B_m} - 1 \right) \left(k^2 - \frac{B_s/B_m - 1}{B_M/B_m - 1} \right) \left(\frac{\chi'}{\chi} - \left(B_s^2 \right)' / \left(2B_s^2 \right) \right) + \frac{B_s}{B_m} \left(B_s^2 \right)' / \left(2B_s^2 \right) \right],$$

where $\omega_{nb} = 1/\int_{\theta_{t1}}^{\theta_{t2}} d\theta K^{-1}(\theta)$, the integration limits are turning points at which $v_{\parallel}(\theta_j) = 0$ for $j = 1$ and 2 , and $\chi'/\chi = \langle B^2 \rangle' / \langle B^2 \rangle + 4\pi P' / \langle B^2 \rangle - F q' \chi' / \langle B^2 \rangle$, and P is total pressure. The $\langle \mathbf{v}_{d1} \bullet \nabla V \rangle_b = (McE/e\chi) \sum_{nl} [\bar{A}_{1nl}(-n \sin n\xi_0) + \bar{B}_{1nl}(n \cos n\xi_0)] e^{ilk_{\chi} p_{\xi}}$, where $\omega_{nb}^{-1} (\bar{A}_{1nl} - \bar{B}_{1nl}) = \left\{ \int_{\theta_{t1}}^{\theta_{t2}} d\theta K^{-1}(\theta) [-\lambda B_s/B_m + 2(1 - \lambda B_s/B_m)] (B_0/B_s) [A_{1nl}(\theta) - B_{1nl}(\theta)] \cos [lk_{\chi} \rho_{b\chi} \sqrt{\lambda} x K(\theta)] \right\}$.

Effects of finite $\varepsilon^{1/2} \rho_{pi}$ appear in the argument of the cosine function.

We expand Eq.(3) using local transport ordering, i.e., $\nu \sim \langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} > \mathbf{v}_{d1} \bullet \nabla V / (|\nabla V|L)$. The leading order equation is $\langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} \partial f_{00} / \partial \xi_0 = \langle C(f_{00}) \rangle_{ob}$, where the second subscript denotes the ordering. The approximate solution is $f_{00} = f_M(V)$, a Maxwellian distribution. The next order equation for f_{01} , the correction to f_{00} , is

$$\langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} \partial f_{01} / \partial \xi_0 + \langle \mathbf{v}_{d1} \bullet \nabla V \rangle_{ob} \partial f_M / \partial V = \langle C(f_{01}) \rangle_{ob}, \quad (4)$$

Because the width of orbits is finite, the definitions for transport fluxes become

$$\left(\begin{array}{l} \langle \Gamma \bullet \nabla V \rangle_{\chi} \\ \langle \mathbf{q} \bullet \nabla V / T \rangle_{\chi} \end{array} \right) = \int \frac{d\chi}{\Delta\chi} \int \frac{d\theta}{2\pi} \int \frac{d\xi}{2\pi} \int d\mathbf{v} \mathbf{v}_d \cdot \nabla V \left(\begin{array}{l} 1 \\ x^2 - 5/2 \end{array} \right) f, \quad (5)$$

where Γ is the particle flux, \mathbf{q} is the heat flux, and $\langle \bullet \rangle_{\chi}$ denotes the flux surface and radial averages. The radial average is performed over a region that is wider than $\varepsilon^{1/2} \rho_{pi}$ but narrower than L . Because we order $\sqrt{\varepsilon} \rho_{pi} |\nabla \chi| \sim \lambda_{k_{\chi}} = 2\pi/k_{\chi} < |\nabla \chi|L$, averaging over a region wider than $\varepsilon^{1/2} \rho_{pi}$ is the same as averaging over a wavelength. Thus, we choose $\Delta\chi = \lambda_{k_{\chi}}$.

In the superbanana plateau regime, fluxes are dominated by the resonant particles that have $\langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} = 0$. We expand $f_{01} = \sum_{nl} (a_{nl} \cos n\xi_0 + b_{nl} \sin n\xi_0) e^{ilk_{\chi} p_{\xi}}$, and approximate $\langle C(f_{01}) \rangle_{ob} = -\nu f_{01}$, where a_{nl} and b_{nl} are Fourier coefficients. Substituting f_{01} into Eq.(4),

and taking $|ve\chi'/(McE\epsilon')| \rightarrow 0$ limit yield the resonant part of the Fourier coefficients: $(a_{nl})_r = -R_n (McE/e\chi) n \bar{B}_{nl} \partial f_M / \partial V$, and $(b_{nl})_r = R_n (McE/e\chi) n \bar{A}_{nl} \partial f_M / \partial V$, where $R_n = (\pi/|n|) [\delta(k^2 - k_r^2) / |\partial G / \partial k_r^2| |McE\epsilon'/(e\chi')|]$, δ is the delta function, and k_r^2 is the resonant pitch angle parameter at which $\langle \mathbf{v}_d \bullet \nabla \xi_0 \rangle_{ob} = 0$. Using resonant part of f_{01} in Eq.(5) yields

$$\left(\langle \Gamma \bullet \nabla V \rangle_\chi \right) = - \frac{N v_t^2}{4\sqrt{\pi\epsilon'} |e|\chi} \frac{Mc}{(B_M/B_m - 1)^{1/2}} \left[\left(\frac{\eta_1}{\eta_2} \right) \left(\frac{p'}{p} + \frac{e\Phi'}{T} \right) + \left(\frac{\eta_2}{\eta_3} \right) \frac{T'}{T} \right], \quad (6)$$

where N is density, and p is plasma pressure. The coefficients η_j for $j = 1 - 3$ in Eq.(6) are

$$\eta_j = \int_{x_m}^{\infty} dx x^4 (x^2 - 5/2)^{j-1} e^{-x^2} \left[1 + k_r^2 (B_M/B_m - 1) \right]^{-2} \int_{\theta_{i1}}^{\theta_{i2}} d\theta \frac{\lambda_{k_r^2}^{-1/2} B/B_m}{\left[k_r^2 - (B/B_m - 1) / (B_M/B_m - 1) \right]^{1/2}} \times \\ |n| \left(|\bar{A}_{nl}|^2 + |\bar{B}_{nl}|^2 \right)_{k_r^2} / |\partial G / \partial k_r^2|, \quad (7)$$

where quantities with the subscript k_r^2 are evaluated at resonant k_r^2 . Superbanana plateau resonance can occur only for particles that have normalized speed greater than x_{\min} [1]. The lower limit x_{\min} in Eq.(7) depends on sign of the parameter $\sigma_{\Phi' e}$; $\sigma_{\Phi' e} = +1$ if Φ' and e have the same signs, otherwise $\sigma_{\Phi' e} = -1$. If $\sigma_{\Phi' e} = 1$, $G(k)$ must be negative to have the resonance, and $x_{\min}^2 = 2(c|\Phi'|/\chi)(|e|\chi/Mc)(v_t^2\epsilon')^{-1}|G_m(k)|^{-1}$, with $G_m(k)$, the global minimum of $G(k)$. If $\sigma_{\Phi' e} = -1$, $G(k)$ must be positive to resonate, and $x_{\min}^2 = 2(c|\Phi'|/\chi)(|e|\chi/Mc)(v_t^2\epsilon')^{-1}|G_M(k)|^{-1}$, with $G_M(k)$, the global maximum of $G(k)$.

In conclusion, short wavelength variations of the magnetic perturbations are smoothed out by finite values of $\epsilon^{1/2}\rho_{pi}$. The radial profile for fluxes varies on the equilibrium scale, consistent with results in [6]. The theory can be extended for energetic alpha particles.

Acknowledgement

*This work was supported by Taiwan Ministry of Science and Technology (MOST) under Grant No.100-2112-M-006-004-MY3.

References

- [1] K. C. Shaing, K. Ida, and S. A. Sabbagh, Nucl. Fusion **55**, 125001 (2015).
- [2] Y. Sun, et al., Phys. Rev. Lett. **105**, 145002 (2010).
- [3] S. V. Kasilov, et al., Phys. Plasmas **21**, 092506 (2014).
- [4] K. C. Shaing, J. Plasma Phys. **81**, 905810203 (2015).
- [5] K. C. Shaing, Phys. Plasmas **22**, 102502 (2015).
- [6] S. A. Sabbagh, et al., Fusion Energy Conference, IAEA 2014 Paper EX 1-4.
- [7] F. L. Hinton, and R. D. Hazeltine, Rev. Mod. Phys. **48**, 239 (1976).