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 Real tokamaks are not toroidally symmetric. A transport theory has been developed 

for large aspect ratio tokamaks with broken symmetry [1]. The theoretical predictions are in 

agreement with numerical results in the 

€ 

ε  < 1 limit, with 

€ 

ε , the inverse aspect ratio [2.3]. The 

theory hasbeen extended to include effects of finite 

€ 

ε , and finite

€ 

β [4,5], with

€ 

β, the ratio of 

the plasma pressure to magnetic field pressure. However, there are cases where the radial 

wavelength of the perturbed magnetic field can be comparable to 

€ 

ε1 2ρpi ,	
   the width of the 

bananas [6], where 

€ 

ρpi
is the ion poloidal gyro-radius, the theory is further extended here to 

accommodate those short wavelength modes. The relevant equation is the orbit averaged drift 

kinetic equation to account for the physics of finite 

€ 

ε1 2ρpi  in the low collisionality regimes. 

The key assumptions are 

€ 

ρ
i
L  < 

€ 

ρpi
L  < 1, but 

€ 

kχ ∇χ ερpi
 ∼ 1, with 

€ 

ρ
i
, the ion gyro-

radius; L, the radial equilibrium scale length; 

€ 

kχ , the radial wave vector of perturbed modes; 

and

€ 

χ, the poloidal flux. The transport fluxes in th superbanana plateau regime are calculated 

by solving the orbit averaged drift kinetic equation. 

 In Hamada coordinates, the magnetic field B = 

€ 

ʹ′ ψ 

€ 

∇V × ∇θ - 

€ 

ʹ′ χ 

€ 

∇V × ∇ζ, where V is 

the volume inside the magnetic surface,  

€ 

θ  is the poloidal angle, 

€ 

ζ  is the toroidal angle, 

€ 

ʹ′ ψ = 

€ 

B •∇ζ , 

€ 

ψ  is the toroidal flux, 

€ 

ʹ′ χ = 

€ 

B •∇θ , and prime denotes

€ 

d dV . Also B = G

€ 

∇θ  + F

€ 

∇ζ  

+ 

€ 

∇ϕ , where F is the poloidal current outside a magnetic surface, G is the toroidal current 

inside a magnetic surface, 

€ 

ϕ  satisfies

€ 

B •∇ϕ = 

€ 

B2 - 

€ 

B2 , and 

€ 

•  denotes flux surface 

average. The 

€ 

B =B spectrum on the perturbed magnetic surface can be written as B = 

€ 

Bs V ,θ( )  - 

€ 

B0  

€ 

An V ,θ( )cosnζ0 + Bn V ,θ( )sinnζ0[ ]
n

∑ , where 

€ 

Bs  is the axisymmetric magnetic 

field strength, 

€ 

B0  is B at the axis, 

€ 

ζ0 = qθ -ζ, q is the safety factor, and n, the toroidal mode 

number. We assume that the magnitudes of 

€ 

An , and 

€ 

Bn  are too weak to trap particles, 

however, allow the radial wavelength of 

€ 

An , and 

€ 

Bn  comparable to	
  

€ 

ε1 2ρpi . 
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 When 

€ 

ν*= 

€ 

νRq (vtε
3 2)  < 1, transport processes are dominated by the drift dynamics 

of bananas wobbling off the magnetic surface. Here, R is the major radius, 

€ 

vt  = 

€ 

2T M , T is 

the temperature, and M is the mass. In 

€ 

pζ ,ζ0,θ,E,µ( )  coordinates, the drift kinetic equation is 

   

€ 

˙ θ ∂f ∂θ  + 

€ 

˙ ζ 0∂f ∂ζ0  +

€ 

˙ p ζ ∂f ∂pζ  = 

€ 

C f( ),    (1) 

where f is the particle distribution,

€ 

pζ  = 

€ 

χ -

€ 

F −∂ϕ ∂ζ0( )v|| Ω ,

€ 

v||  is the particle speed parallel 

to B, 

€ 

Ω is the gyro-frequency, 

€ 

C f( ) is the Coulomb collision operator, E = 

€ 

v2 2 + 

€ 

eΦ M , 

€ 

µ  = 

€ 

v⊥
2 2B( ), v is the particle speed, 

€ 

Φ is the electrostatic potential, e is the electric charge, 

€ 

˙ θ  = 

€ 

v||n + vd( ) •∇θ , n = B/B, 

€ 

vd  
= -

€ 

v||n × ∇ v|| Ω( )
 
is the drift velocity, 

€ 

˙ ζ 0 = 

€ 

vd •∇ζ0  = 

€ 

v|| B( )

€ 

∂ v||B × ∇ζ0 •∇θ Ω( ) ∂θ  + 

€ 

v|| Ω ʹ′ χ ( )[ ]

€ 

∂ v||B( ) ∂V , 

€ 

˙ p ζ = 

€ 

ʹ′ χ 

€ 

vd1 •∇V , and 

€ 

vd1 •∇V  =  

€ 

v|| Ω ʹ′ χ ( )[ ]

€ 

∂ v||B( ) ∂ζ0 . Only the first order terms in 

€ 

ρpi
L  ordering are kept in 

€ 

˙ p ζ . Note that 

€ 

vd  
in the

€ 

∇V , and 

€ 

∇ζ0  directions are also valid for finite 

€ 

β plasmas [5,7]. 

 We adopt the ordering where the bounce frequency 

€ 

ω b  is much larger than the drift 

frequency 

€ 

ω d , and collision frequency 

€ 

ν . The leading order equation is 

€ 

˙ θ ∂f0 ∂θ  = 0, where 

€ 

f0  = 

€ 

f0

€ 

pζ ,ζ0,E,µ( )  is the zeroth order distribution. The next order equation is  

 

€ 

v||n + vd( ) •∇θ

€ 

∂f1 ∂θ+

€ 

vd •∇ζ0

€ 

∂f0 ∂ζ0+

€ 

ʹ′ χ 

€ 

vd1 •∇V

€ 

∂f0 ∂pζ  = 

€ 

C f0( ) .   (2) 

Because 

€ 

f1 is periodic, the following orbit averaged drift kinetic equation must be satisfied 

  

€ 

vd •∇ζ0 ob

€ 

∂f0 ∂ζ0+

€ 

ʹ′ χ 

€ 

vd1 •∇V
ob
∂f0 ∂pζ  = 

€ 

C f0( )
ob

,   (3) 

where 

€ 

• ob=

€ 

dθ •( )B ω ʹ′ χ ∫ dθ B ω ʹ′ χ ∫  denotes the orbit average, and 

€ 

ω  = 

€ 

v||n + vd( ) •∇θ n •∇θ . Because 

€ 

ρpi
L  < 1, 

€ 

ω  ≈ 

€ 

v||  in 

€ 

• ob , and the difference between 

€ 

pζ  

and V on the equilibrium quantities is neglected. 

 We decompose 

€ 

An  and 

€ 

Bn  as 

€ 

An Bn( ) = 

€ 

A0n B0n( ) + 

€ 

A1n B1n( ), where 

€ 

A0n and	
  

€ 

B0n  have radial variations of the order of L, and 

€ 

A1n  and 

€ 

B1n  have much shorter variations 

than L. We express 

€ 

A1n B1n( ) = 

€ 

A1nl B1nl( )eilkχ χ
l

∑ , where l is a nonzero integer, and 

€ 

A1nl  

and 

€ 

B1nl  are Fourier coefficients. The contributions of 

€ 

A0n  and 

€ 

B0n  to fluxes can be found in 

[1]. Here, we present fluxes caused by 

€ 

A1n  and 

€ 

B1n . In 

€ 

pζ ,θ,ζ0,E,µ( ) , 

€ 

χ = 

€ 

pζ  + 

€ 

σ x

€ 

ρbχ

€ 

λ

€ 

K θ( ) by neglecting 

€ 

∂ϕ ∂ζ0 , where 

€ 

σ  = sgn(

€ 

v|| ), x =

€ 

v vt( ) , 

€ 

λ  = 

€ 

µBm E , 

€ 

ρbχ  = 

€ 

Fvt Ωm( )

€ 

BM Bm −1( ) , 

€ 

Ωm = 

€ 

Ω(

€ 

Bm ), 

€ 

K θ( ) = 

€ 

Bm B( )

€ 

k 2 − B Bm −1( ) BM Bm −1( )[ ]
1 2

, 

€ 

k 2  
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= 

€ 

1− λ( ) λ BM Bm −1( )[ ], 

€ 

k 2  >1 for circulating particles, 

€ 

k 2  <1 for trapped particles, and 

€ 

BM  and 

€ 

Bm are respectively the maximum and minimum values of

€ 

Bs V ,θ( ).  

 The toroidal drift frequency is

€ 

vd •∇ζ0 ob
 = 

€ 

c ʹ′ Φ ʹ′ χ  +

€ 

McE e ʹ′ χ ( )

€ 

εʹ′ G(k), where 

€ 

ʹ′ ε = 

€ 

dε dV  is a normalization factor. The dimensionless resonance function G(k) is  

€ 

G k( )=

€ 

λω nb

ʹ′ ε 

€ 

dθ
θ t1

θ t 2∫ K −1 θ( )

€ 

2 BM

Bm

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ k 2 − Bs Bm −1

BM Bm −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ʹ′ ʹ′ χ 

ʹ′ χ 
− Bs

2( )ʹ′ 2Bs
2( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

€ 

Bs

Bm

Bs
2( )ʹ′ 2Bs

2( )
⎤ 

⎦ 
⎥ , 

where 

€ 

ω nb= 

€ 

1 dθ
θ t1

θ t 2∫ K −1 θ( ), the integration limits are turning points at which 

€ 

v|| θ j( ) = 0 for 

j = 1 and 2, and  

€ 

ʹ′ ʹ′ χ ʹ′ χ  = 

€ 

B2 ʹ′ B2  + 

€ 

4πPʹ′ B2  - F

€ 

ʹ′ q 

€ 

χʹ′ B2 , and P is total pressure. The 

€ 

vd1 •∇V
b
=

€ 

McE e ʹ′ χ ( )

€ 

A 1nl −n sinnζ0( ) + B 1nl ncosnnζ0( )[ ]eilkχ pζ
nl

∑ , where

€ 

ω nb
−1

€ 

A 1nl B 1nl( )= 

€ 

dθ
θ t1

θ t 2∫ K −1 θ( )
⎧ 
⎨ 
⎩ 

€ 

−λBs Bm + 2 1− λBs Bm( )[ ]

€ 

B0 Bs( ) A1nl θ( ) B1nl θ( )[ ]

€ 

cos lkχρbχ λxK θ( )[ ]}. 
Effects of finite 

€ 

ε1 2ρpi  appear in the argument of the cosine function. 

 We expand Eq.(3) using local transport ordering, i.e., 

€ 

ν  ∼

€ 

vd •∇ζ0 ob
> 

€ 

vd1 •∇V ∇V L( ) . The leading order equation is 

€ 

vd •∇ζ0 ob

€ 

∂f00 ∂ζ0= 

€ 

C f00( )
ob

, where 

the second subscript denotes the ordering. The approximate solution is

€ 

f00 = 

€ 

fM V( ), a 

Maxwellian distribution. The next order equation for 

€ 

f01, the correction to 

€ 

f00, is  

  

€ 

vd •∇ζ0 ob

€ 

∂f01 ∂ζ0+

€ 

vd1 •∇V
ob

€ 

∂fM ∂V  = 

€ 

C f01( )
ob

,  (4) 

 Because the width of orbits is finite, the definitions for transport fluxes become 

  

€ 

Γ•∇V χ

q •∇V T
χ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 

€ 

dχ
Δχ
∫ dθ

2π∫
dζ
2π∫ dvvd∫ ⋅ ∇V

1
x 2 − 5 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ f ,  (5) 

where 

€ 

Γ is the particle flux, q is the heat flux, and 

€ 

• χ  denotes the flux surface and radial 

averages. The radial average is performed over a region that is wider than 

€ 

ε1 2ρpi  but 

narrower than L. Because we order 

€ 

ερpi

€ 

∇χ ∼

€ 

λkχ = 

€ 

2π kχ < 

€ 

∇χ L, averaging over a region 

wider than 

€ 

ε1 2ρpi  is the same as averaging over a wavelength. Thus, we choose 

€ 

Δχ = 

€ 

λkχ .  

 In the superbanana plateau regime, fluxes are dominated by the resonant particles that 

have 

€ 

vd •∇ζ0 ob
 = 0. We expand 

€ 

f01= 

€ 

anl cosnζ0 + bnl sinnζ0( )
nl

∑ eilkχ pζ , and approximate 

€ 

C f01( )
ob

= - 

€ 

ν

€ 

f01, where 

€ 

anl  and 

€ 

bnl  are Fourier coefficients. Substituting 

€ 

f01 into Eq.(4), 
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and taking 

€ 

νe ʹ′ χ McE ʹ′ ε ( )  

€ 

→ 0 limit yield the resonant part of the Fourier coefficients: 

€ 

anl( )r 

= - 

€ 

Rn

€ 

McE e ʹ′ χ ( )n

€ 

B 1nl

€ 

∂fM ∂V , and 

€ 

bnl( )r  = 

€ 

Rn

€ 

McE e ʹ′ χ ( )n

€ 

A 1nl

€ 

∂fM ∂V ,  where 

€ 

Rn  = 

€ 

π n( )

€ 

δ k 2 − kr
2( ) ∂G ∂kr

2 McE ʹ′ ε e ʹ′ χ ( )[ ], 

€ 

δ  is the delta function, and 

€ 

kr
2  is the resonant pitch 

angle parameter at which 

€ 

vd •∇ζ0 ob
 = 0. Using resonant part of 

€ 

f01 in Eq.(5) yields 

 

€ 

Γ•∇V χ

q •∇V T
χ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = - 

€ 

Nvt
2

4 π ʹ′ ε 
Mc
e ʹ′ χ 

€ 

BM Bm −1( )1 2

€ 

η1
η2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ʹ′ p 
p

+
e ʹ′ Φ 
T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

η2
η3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ʹ′ T 

T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (6) 

where N is density, and p is plasma pressure.  The coefficients 

€ 

η j  for j = 1 – 3 in Eq.(6) are 

€ 

η j=

€ 

dxx 4
xm

∞

∫ x 2 − 5 2( ) j−1e−x 2

€ 

1+ kr
2 BM Bm −1( )[ ]

−2

€ 

dθ
θ t1

θ t 2∫
λkr2
−1 2B Bm

kr
2 − B Bm −1( ) BM Bm −1( )[ ]

1 2

€ 

×  

    

€ 

n A 1nl
2

+ B 1nl
2( )

kr
2
∂G ∂kr

2 ,     (7) 

where quantities with the subscript 

€ 

kr
2  are evaluated at resonant

€ 

kr
2 . Superbanana plateau 

resonance can occur only for particles that have normalized speed greater than

€ 

xmin [1]. The 

lower limit 

€ 

xmin  in Eq.(7) depends on sign of the parameter 

€ 

σ ʹ′ Φ e ; 

€ 

σ ʹ′ Φ e =  +1 if 

€ 

ʹ′ Φ  and e have 

the same signs, otherwise 

€ 

σ ʹ′ Φ e= -1. If 

€ 

σ ʹ′ Φ e= 1, 

€ 

G k( )  must be negative to have the resonance, 

and 

€ 

xmin
2 = 

€ 

2 c ʹ′ Φ ʹ′ χ ( ) e ʹ′ χ Mc( ) vt2 ʹ′ ε ( )−1Gm k( )
−1

, with 

€ 

Gm k( ) , the global minimum of 

€ 

G k( ) . If 

€ 

σ ʹ′ Φ e= -1, 

€ 

G k( )  must be positive to resonate, and 

€ 

xmin
2 =

€ 

2 c ʹ′ Φ ʹ′ χ ( ) e ʹ′ χ Mc( ) vt2 ʹ′ ε ( )−1GM k( )
−1

, 

with 

€ 

GM k( ) , the global maximum of 

€ 

G k( ) . 

 In conclusion, short wavelength variations of the magnetic perturbations are 

smoothed out by finite values of 

€ 

ε1 2ρpi . The radial profile for fluxes varies on the equilibrium 

scale, consistent with results in [6]. The theory can be extended for energetic alpha particles. 
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