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Introduction

Fast ion populations can be produced in tokamaks by the absorption of waves in the
range of Ion-Cyclotron Range of Frequency (ICRF). As is well known, the absorption
of ICRF wave by the majority ion species cannot occur at the fundamental resonance
because the left-handed component of the electric field E* vanishes at that location.
The Minority Heating (MH) scheme requires the addition of a second ion species in
low concentration, and has been successfully used in experiments in order to exploit
fundamental ICRF wave absorption. This scheme generally allows for the generation
of fast ions no less than a few hundreds keV. Generating fast ions in higher energy
range can be addressed by a newly developped ICRF scenario [1] known as the “three-
ion species” method which shows tremendous potential for fast ion generation. It is
intended that the recently started stellarator Wendelstein 7-X (W7-X) will use ICRF
waves for fast generation. In the present work, we use the SCENIC package [2] in order
to initiate a comparison between these scenarios in typical axisymmetric JET-like and

W?7-X plasma configurations.

Two-Dimensional configuration
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Figure 1: Relative power absorbed by
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1.0[keV], where 72 < 1 is the normalised toroidal flux. For simplicity, an analytic es-
timate for the safety factor is used: q(r) = qo + (91 — go)r*> where go = 1.1 and gq; = 5.1.
The plasma major and minor radii are respectively Rg =2.96m and 4 = 0.9 m and where
the magnetic field amplitude is By = 3.2T. The ICRF wave input power is Prr = 3MW
and the frequency is fixed at f = 32.5MHz which corresponds to on-axis fundamental
resonance for >He ions. Following Ref. [1], the background ion species is a mixture of
Deuterium, Hydrogen and 0.1% of 3He at By = 3.2T. The full-wave code LEMan is used
for the estimation of the optimal mixture of Hydrogen and Deuterium which max-
imises power absorption on *He ions. Fig. 1 shows the relative power absorbed by each
plasma species as the Hydrogen concentration increases. The LEMan code estimates an
optimal mix of H:D~ 71% : 29% which is in good agreement with the estimation given
in Ref. [1].

The SCENIC package is used on the basis of this

plasma configuration in order to resolve the self-
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Figure 3: Saturated *He energy
distribution functions obtained for
each phasing and compared to a

typical minority heating scheme.

scheme (Deuterium plasma with [*He]=1%) for comparison. Fig. 3 clearly shows a
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much shorter fast ion tail for Minority Heating than for the three-ion species method.
Figs. 2 and 3 show that the fast ion energy range is higher when +90° phasing is ap-
plied. This can be understood via the inward RF-pinch effect [3] which for +90° phasing
causes the resonant particles interaction time with the wave to increase as compared
with -90° and dipole phasings. The RF-pinch effect can clearly be seen by the peaking

position in the fast ion pressure profile illustrated in Fig.4.
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Figure 4: Fast ion pressure profiles for each investigated antenna phasing

Three-Dimensional configuration

The W7-X stellarator is the first optimised quasi-isodynamic stellarator and has re-
cently started operation. One of the experimental goals of this machine is to demon-
strate the capacity of the quasi-isodynamic configuration to magnetically confine a-like
fastions. ICRF is foreseen in W7-X as a potential source of fast ions within 50 — 100keV.
It was shown in Ref. [4] that the Minority Heating scheme will not be able to produce
significant ion population in that range of energy, at least with the foreseen available
power of 1.5MW. This is mainly due to the high core density which prevents fast ion
tail formation. A typical high-mirror W7-X equilibrium is constructed with the follow-
ing density and temperature profiles expressed in terms of normalised toroidal flux s:
ne=15x10% (09 x (1 —59)2+0.1) [m 3] and T, = 4 x 10%(1 — s)[eV]. This equilib-
rium is used to resolve the ICRF distribution function for both Minority Heating and
three-ion species schemes. The resonant layer was set in both cases to be on-axis in
the region containing the antenna. The Minority Heating scenario uses a Deuterium
plasma with 0.5% of Hydrogen minority. The three-ion species scenario features a
H:D= 68% : 32% plasma with 0.1% of *He. The intrisic 3D dependency of the equi-
librium imposes a strong coupling between the waves’ poloidal and toroidal modes.
Therefore it is not possible to identify a dominant mode number as generally done in

2D simulations. Instead, the antenna excitation modelled with SCENIC uses a range of
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coupled poloidal and toroidal modes and is therefore fully spatially localised in the

ICRF simulations of W7-X.
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hance the high energy disitribution, but 0.1%
of 3He is already below the noise of experimental detection in the plasma. Lower con-
centrations are still to be numerically investigated and contrasted with the simulations

presented here.

Conclusion

The SCENIC package has been used in order to resolve and compare the ICRF dis-
tribution functions obtained when applying Minority Heating and three-ion species
schemes in typical axisymmetric tokamak and stellarator configurations. The new sim-
ulations confirm the higher potential of the three-ion species scenario to generate a
larger fast ion population in both types of magnetic configuration.
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