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Introduction

In this paper, we use a novel mesh-free model — see [1, 2, 3] — for two-dimensional electro-

static plasmas with a static magnetic field to simulate various scenarios. We start with a warm

plasma having a completely homogeneous density and compare the mode content of our solu-

tion to a direct numerical solution of the analytic dispersion relation. Next, we turn to a well-

studied set-up that exhibits the classical plasma Kelvin-Helmholtz (KH) instability and compare

growth-rates between our model and a more traditional particle-in-cell (PIC) method. Finally,

we propose a new scenario, where the boundary layer between a vacuum and a two-species

plasma develops a sheared velocity field and becomes unstable with characteristics similar to

the classical KH instability.

Warm magnetized plasma with a homogeneous density

First, we use our computer model to sim-
ulate a warm magnetized plasma with a ho-
mogeneous density. The plasma fills a square
box of side length L = 100ry ; with periodic
boundary conditions in the x and y directions.
All system quantities are assumed to be con-
stant in the direction of the background mag-
netic field Byl||2. The box contains 107 par-

ticles each for two species with a mass ratio
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Figure 1: Frequency/wave number spectrum

W = 16 and temperature ratio T = 1, the background magnetic field has a strength of By = 2.

We simulate the dynamics of the system for a duration 0 <= @, j# < 60 in discrete time steps

@ iAt = 0.0067.
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Figure 1 shows the spatial and temporal
mode content of the y component of the elec-
tric field. It contains multiple ion cyclotron
modes separated by @ ; and also reproduces
some electron modes at multiples of @ce =
16COC,1.

Figure 2 shows a zoom of the same data

with a numeric solution of the analytic dis-

Figure 2: Zoom of figure 1, with analytic dis- persion relation [5] overlaid as red dots. The

persion relation as red dots

modes contained in our results agree well

with the predictions and are also comparable to a study of the same set-up using a traditional

PIC code.

The classical Kelvin-Helmholtz scenario in warm magnetized plasmas

Next, we use our method to reproduce ex-
periment I from [4] and simulate the classi-
cal KH scenario with two counter-streaming
half spaces. The simulation region spans an
area of L, x Ly = 25.6 x 102.4 rf’i with pe-
riodic boundary conditions in the y direction.
We use about 107 particles for both species
with a mass ratio of u = 16 with a slight ex-

cess of electrons concentrated in the center of
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Figure 3: ® and E), for the classical KH

the geometry to create a hyperbolic tangent electric field profile of width @ = r_; in the y direc-

tion driving a sheared E x B that feeds the instability. The magnetic field is By = 2.
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Figure 4: Comparison of growth rates

2.5

Figure 3 shows potential ® and field com-
ponent E, at @ ;¢ = 18.75 (linear phase, left)
and @it = 43.75 (nonlinear phase, right).
They exhibit vortical structures that are char-
acteristic for the KH instability. Figure 4
shows the growth rates for several spatial
modes comparing our results (in black) to the
results from [4] and theoretical predictions.

The results show good agreement.
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Table 1: Plasma parameters for the simulation runs of the plasma-vacuum interface instability

Run mj/me @ce/Wpe @ci/@p; rLi/Ape Box sizeLx><Ly/rii

1 4 2 1
2 16 2 0.5
3 100 2 0.2

1 50 x 125
2 25 x 62.5
5 10 x 25

The Kelvin-Helmholtz instability in a plasma-vacuum boundary layer

Figure 5 illustrates the geometry of the
boundary layer. The two-species plasma fills
one half of the x-y-plane. Ions (red) move
on circular orbits with a larger radius due to
their bigger mass. This takes them farther out-
side the bulk plasma and creates a charge im-
balance. An electric field arises, pointing to-
wards the plasma-filled region. In conjunction
with the magnetic field, it causes the particles
to drift in the negative y-direction.
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Figure 6: ® and E), for the PV KH

is higher, resulting in smaller features.

Figure 7 shows growth rates as a function
of mode number normalized to the same elec-
tron quantities for runs 1-3. In this set of
units, the fastest growing mode number as

well as the highest growth rates are compa-
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Figure 5: Boundary layer geometry

We perform several simulations of this sce-
nario at different mass ratios. Table 1 summa-
rizes the important parameters.

Figure 6 shows the potential ® and electric
field component E), at @, jt = 18.75 (left) and
@ it = 31.25 (right) for run 2. They demon-
strate the growth of periodic structures at the
PV interface. Compared to the classical KH

instability, the dominant spatial mode number

Table 2: Effective shear layer width a and effec-

tive velocity shear strength V

Run a/rLi Vo/vmi d/rLi Vo/vini

1 0.70 0.10 0.36  0.051
2 0.75 0.29 0.18 0.10
3 0.63 0.86 0.072 0.26

rable for all three runs, even though theoretic models for the classical KH instability predict a

scaling with the shear layer parameters width (a) and strength (Vp) which vary with mass ratio.
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Figure 7: Growth rates for runs 1-3

3.0

and the classical model, also found in table 2.

Figure 8 shows the growth rates, this time
normalized using the effective parameters.
Notably, the three results show a certain sim-
ilarity also to one another, especially a sup-
pression of low wave number unstable modes.
Comparing the actual and effective parame-
ters in table 2, the KH instability in the PV

scenario can be said to be similar to a classi-

ay/Vo

We determine a and Vj from an analysis of
all particle trajectories, see table 2. However,
a normalization using these actual parame-
ters does not lead to self-similarity between
the three results, nor does it make the results
compatible with the model for the classical
KH instability. We determine a set of effec-
tive parameters @ and Vj by performing a least

squares fit between the growth rate spectra
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Figure 8: Fitted growth rates

cal instability with a reduced shear layer width and shear strength.

Conclusions

In this work, we have compared our novel method to both theory and traditional PIC meth-

ods using simulations of well-understood plasma phenomena. We have also presented a new

scenario for a KH type instability in plasmas and studied its growth rates.
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