
Mesh-free simulations of the Kelvin-Helmholtz instability

in the kinetic regime

B. Steinbusch1, P. Gibbon1,2, R.D. Sydora3

1 Institute for Advanced Simulations, Jülich Supercomputing Centre,

Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
2 Centre for Mathematical Plasma Astrophysics, Department of Mathematics,

Katholieke Universiteit Leuven, Belgium
3 Department of Physics, University of Alberta,

Edmonton, Alberta T6G 2E1, Canada

Introduction

In this paper, we use a novel mesh-free model – see [1, 2, 3] – for two-dimensional electro-

static plasmas with a static magnetic field to simulate various scenarios. We start with a warm

plasma having a completely homogeneous density and compare the mode content of our solu-

tion to a direct numerical solution of the analytic dispersion relation. Next, we turn to a well-

studied set-up that exhibits the classical plasma Kelvin-Helmholtz (KH) instability and compare

growth-rates between our model and a more traditional particle-in-cell (PIC) method. Finally,

we propose a new scenario, where the boundary layer between a vacuum and a two-species

plasma develops a sheared velocity field and becomes unstable with characteristics similar to

the classical KH instability.

Warm magnetized plasma with a homogeneous density
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Figure 1: Frequency/wave number spectrum

First, we use our computer model to sim-

ulate a warm magnetized plasma with a ho-

mogeneous density. The plasma fills a square

box of side length L = 100rL,i with periodic

boundary conditions in the x and y directions.

All system quantities are assumed to be con-

stant in the direction of the background mag-

netic field BBB0||ẑzz. The box contains 107 par-

ticles each for two species with a mass ratio

µ = 16 and temperature ratio τ = 1, the background magnetic field has a strength of B0 = 2.

We simulate the dynamics of the system for a duration 0 <= ωc,it < 60 in discrete time steps

ωc,i∆t = 0.0067.
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Figure 2: Zoom of figure 1, with analytic dis-

persion relation as red dots

Figure 1 shows the spatial and temporal

mode content of the y component of the elec-

tric field. It contains multiple ion cyclotron

modes separated by ωc,i and also reproduces

some electron modes at multiples of ωc,e =

16ωc,i.

Figure 2 shows a zoom of the same data

with a numeric solution of the analytic dis-

persion relation [5] overlaid as red dots. The

modes contained in our results agree well

with the predictions and are also comparable to a study of the same set-up using a traditional

PIC code.

The classical Kelvin-Helmholtz scenario in warm magnetized plasmas
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Figure 3: Φ and Ey for the classical KH

Next, we use our method to reproduce ex-

periment I from [4] and simulate the classi-

cal KH scenario with two counter-streaming

half spaces. The simulation region spans an

area of Lx× Ly = 25.6× 102.4 r2
L,i with pe-

riodic boundary conditions in the y direction.

We use about 107 particles for both species

with a mass ratio of µ = 16 with a slight ex-

cess of electrons concentrated in the center of

the geometry to create a hyperbolic tangent electric field profile of width a = rL,i in the y direc-

tion driving a sheared EEE×BBB that feeds the instability. The magnetic field is B0 = 2.
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Figure 4: Comparison of growth rates

Figure 3 shows potential Φ and field com-

ponent Ey at ωc,it = 18.75 (linear phase, left)

and ωc,it = 43.75 (nonlinear phase, right).

They exhibit vortical structures that are char-

acteristic for the KH instability. Figure 4

shows the growth rates for several spatial

modes comparing our results (in black) to the

results from [4] and theoretical predictions.

The results show good agreement.
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Table 1: Plasma parameters for the simulation runs of the plasma-vacuum interface instability

Run mi/me ωc,e/ωp,e ωc,i/ωp,i rL,i/λD,e Box size Lx×Ly/r2
L,i

1 4 2 1 1 50×125

2 16 2 0.5 2 25×62.5

3 100 2 0.2 5 10×25

The Kelvin-Helmholtz instability in a plasma-vacuum boundary layer

Figure 5: Boundary layer geometry

Figure 5 illustrates the geometry of the

boundary layer. The two-species plasma fills

one half of the x-y-plane. Ions (red) move

on circular orbits with a larger radius due to

their bigger mass. This takes them farther out-

side the bulk plasma and creates a charge im-

balance. An electric field arises, pointing to-

wards the plasma-filled region. In conjunction

with the magnetic field, it causes the particles

to drift in the negative y-direction.
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Figure 6: Φ and Ey for the PV KH

We perform several simulations of this sce-

nario at different mass ratios. Table 1 summa-

rizes the important parameters.

Figure 6 shows the potential Φ and electric

field component Ey at ωc,it = 18.75 (left) and

ωc,it = 31.25 (right) for run 2. They demon-

strate the growth of periodic structures at the

PV interface. Compared to the classical KH

instability, the dominant spatial mode number

is higher, resulting in smaller features. Table 2: Effective shear layer width ã and effec-

tive velocity shear strength Ṽ0

Run a/rL,i V0/vth,i ã/rL,i Ṽ0/vth,i

1 0.70 0.10 0.36 0.051

2 0.75 0.29 0.18 0.10

3 0.63 0.86 0.072 0.26

Figure 7 shows growth rates as a function

of mode number normalized to the same elec-

tron quantities for runs 1–3. In this set of

units, the fastest growing mode number as

well as the highest growth rates are compa-

rable for all three runs, even though theoretic models for the classical KH instability predict a

scaling with the shear layer parameters width (a) and strength (V0) which vary with mass ratio.
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Figure 7: Growth rates for runs 1–3

We determine a and V0 from an analysis of

all particle trajectories, see table 2. However,

a normalization using these actual parame-

ters does not lead to self-similarity between

the three results, nor does it make the results

compatible with the model for the classical

KH instability. We determine a set of effec-

tive parameters ã and Ṽ0 by performing a least

squares fit between the growth rate spectra

and the classical model, also found in table 2.
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Figure 8: Fitted growth rates

Figure 8 shows the growth rates, this time

normalized using the effective parameters.

Notably, the three results show a certain sim-

ilarity also to one another, especially a sup-

pression of low wave number unstable modes.

Comparing the actual and effective parame-

ters in table 2, the KH instability in the PV

scenario can be said to be similar to a classi-

cal instability with a reduced shear layer width and shear strength.

Conclusions

In this work, we have compared our novel method to both theory and traditional PIC meth-

ods using simulations of well-understood plasma phenomena. We have also presented a new

scenario for a KH type instability in plasmas and studied its growth rates.
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