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Introduction

Neoclassical tearing modes (NTMs) are resistive MHD instabilities characterised by the for-
mation and evolution of magnetic islands. If allowed to grow, they can limit tokamak perfor-
mance by reducing the core pressure. Controlling NTMs in future devices, such as ITER, is
therefore crucial for successful operations. Experimentally, it is observed that there exists a
threshold to the island width, whereby a sufficiently small seed magnetic island heals itself and
shrinks away [1]. Theoretically, it has been suggested that the finite banana width of trapped
particle orbits may play a role in this threshold effect [2]. Since the observed threshold width
is typically comparable to the banana width of trapped particles, it is important to determine
the importance of this finite banana width effect, in order to develop an effective NTM control
system, which would shrink seed islands to below the threshold width.

In toroidal geometry, the finite banana width effect gives rise to the neoclassical polarisation
current, induced when the magnetic island moves relative to the plasma [2]. This in turn gener-
ates a parallel current perturbation, which may or may not stabilise the island depending on the
conditions. The finite banana width effect also accounts for the radial transport of particles and
heat, which tends to partially restore the flattened pressure profile near the island separatrix [3].
For a sufficiently small island, this reduces the perturbation in the pressure gradient-dependent
bootstrap current which in turn reduces the drive for the NTM growth. Our goal is to investigate
the full effect of the finite banana width using drift kinetic theory. We have developed a numeri-
cal code with a novel iteration scheme to calculate the electrostatic potential perturbation using
quasineutrality as well as the momentum conservation term in a model collision operator. An
accurate determination of the electrostatic potential is vital for calculating the neoclassical po-
larisation current, while the momentum conservation term is needed for an accurate calculation
of the bootstrap current perturbation. In our calculation, we have relaxed the small ion banana
width assumption, compared to the island width (i.e. pp; ~ w). This enables us to explore the full
particle orbit physics and its consequences for the island evolution. In this paper, we examine
the ion response to the magnetic island perturbation using the drift kinetic equation, expanding
in the small ratio of the island width to the tokamak minor radius: A = w/r < 1, while retaining

the ordering pp; = £'/2pg ~ w. We also demonstrate that our numerical code can produce a



43'Y EPS Conference on Plasma Physics 05.128

solution that is a function of a modified “flux” function, €, which is shifted from the perturbed
flux surfaces by a distance O(py;), as indicated by analytic theory.
Drift Kinetic Equation
We work in the standard magnetic island coordinate system,
(v, 0,&), where y, the poloidal magnetic flux, serves as the radial co- (o)

ordinate, 0 is the poloidal angle that measures the distance along the

o

helical equilibrium magnetic field lines, and & is the helical angle that

measures along the length of the island (Fig.1). For a single helicity

magnetic island perturbation, the perturbed magnetic flux is described

by Q =2(y — l[/s)z/w%,, —cos&, where g is the flux at the rational

surface where the island is located, w%, = 4\q,/q,, W describes the —
perturbation amplitude, g; is the safety factor and ¢, = dg/dy|;. We

Figure 1: Magnetic is-

solve the drift kinetic equation by expanding it in terms of A = w/r.

] ) ) land geometry, with con-
We seek a local solution around the rational surface, assuming the
tours of constant L.
following form:

—(1- 2 ) Bu0) G =10 [
fl_<1 E(O))FMl(O)_i_G” FM!(O)_n3/2vt3hl(0)eXp|: Vtzhl(o):|7 (1)

where (0) indicates quantities evaluated at the rational surface, ® is the perturbed electrostatic
potential, and 7; = m,-vtzhl.. As in previous analytic works [2, 4], the perturbation can take the form
Gi = F;;(0)py +g;, where F{y;(0) = Fu;(0) [1 + (v? /v, — 3/2)ni] /Li, Li = (dn;/dr) /n;(0) and
Ni = Lri/Lyi. g = ¥ Akg, is the non-adiabatic response to the island perturbation, Py =Y —
Iy /@, is the toroidal canonical momentum, which is a conserved quantity on particle orbits,
v =0vV1—AB, o =v|/|v|, A is the pitch angle and /() = RBr. We work in the island rest
frame such that there exists an equilibrium radial electric field, so that ® = CD/eql// + ¢, where
¢ is the potential perturbation. Using Eq.(1), we find that the leading order contribution to the

drift kinetic equation comes from the parallel streaming and magnetic drift response:
D 9 (M1 980
] z=0 I— | L) =2| =0 2
[ v + 20\ @. ) dy ’ 2)
so that 80 = gO(p¢7§>V77L)'

Rq | 00
The solution for g, is obtained from the O(A) contribution to the drift kinetic equation, which

includes the island physics, E x B response and collisional effects. The higher order term in g,

d
(i.e. 8 ) can be annihilated by making use of the periodicity in 6 at fixed py (hence varying

26 2

V) for the passing particles, and the particle conservation at bounce points for trapped particles.



43'Y EPS Conference on Plasma Physics 05.128

The result is an orbit-averaged equation for g:
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where A, corresponds to the trapped/passing boundary in the pitch angle space and C(g) is

a momentum-conserving model collision operator. Eq.(3) can be written more compactly by

OF:
introducing the modified flux function, Qg = pé / ZW%/, —cos€. Since g[—épq) =0, we obtain:
Py
dGy dGy dGy Rq
p¢®(l A) (O)D—(X)E’é) — OEy 5—| = —C(Go) . &)
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Analytic Limit

We now demonstrate that the orbit averaged equation (5) produces the same solutions in the
limit of small ion banana width as the ones in [2] . We make a secondary expansion in terms of
0; = Ppi/w < 1, and consider the leading order solution to Eq.(5), Go . In this limit, we may
assume that the electrostatic potential is a function of the perturbed flux function to leading
order, i.e. ® = ®y(Q) + Py, /Py ~ O(J;), where ®| describes the correction to the potential

originating from the particle orbit effects. Then, writing @g y and @ ¢ in terms of ®g and P;:
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Then, O(8) terms in Eq.(6) yield:

Po (9CI>0 Rq
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In the low collision frequency limit v;; /€@ < 1, where v;; is the ion-ion collision frequency and

dGo
d&

o is the island rotation frequency (in our island rest frame, this is expressed in terms of the equi-
librium radial electric field), the solution is: Go = (@! /@, — e®,,L;/Ti)(Fwi(0)/Li)H (L),
where ! /o, = 1+ (v*/vi; —3/2)n; and H(L) is a free modified flux function, which is to

be determined from the collisional constraints on G . Then, Taylor-expanding Qg about € in
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the limit of small p;;, we find that the full ion distribution function as determined from Eq.(5)

is:

ed ol e®, L\ Fy oH
i= (-7 ) me (G -5 B e oGy ron)

If we compare with the solution from [2]:

ed ol eDy L\ Fy; oh e®,, Fyi | -
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we see that the two are identical in form, if H(Q) — h(Q) and G; o — h; (the additional term
in Eq.(9) comes from transforming the solution from the E x B rest frame to the island rest
frame). Therefore, we have verified that our equation (5) can reproduce the correct solution in
the same limit as previous analytic works.
Summary

We have demonstrated that our new drift

kinetic equation for calculating the ion re-

sponse to the island perturbation produces the 5
same form of solution in the limit of small Lr
ion banana width as the previous analytic

work. In order to explore the new physics, we 2

must solve Eq.(5) in full, which requires a nu-
-0.2 0.1 0 0.1 0.2 0.3 04

merical treatment. This will provide a valu- Y-

able benchmark for a numerical solution of

the full Eq.(5). The code under development Figure 2: Numerical solution for G; on y — & plane.

. . . Contours are of constant £s Note that the colour
does produce a solution that is a function of f y

the modified perturbed flux, i.e. G = G(Q)

contour aligns well with the contours of Q, demon-

) ) ) strating that G = G(Qy).
(Fig.2). However, there are differences in the

numerical and analytic limit results for the perturbed ion density and parallel flow profiles,
which need to be understood. Once the benchmarking of our code is complete and its algorithm

fully verified, we will be able to explore the new physics.
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