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Introduction

Neoclassical tearing modes (NTMs) are resistive MHD instabilities characterised by the for-

mation and evolution of magnetic islands. If allowed to grow, they can limit tokamak perfor-

mance by reducing the core pressure. Controlling NTMs in future devices, such as ITER, is

therefore crucial for successful operations. Experimentally, it is observed that there exists a

threshold to the island width, whereby a sufficiently small seed magnetic island heals itself and

shrinks away [1]. Theoretically, it has been suggested that the finite banana width of trapped

particle orbits may play a role in this threshold effect [2]. Since the observed threshold width

is typically comparable to the banana width of trapped particles, it is important to determine

the importance of this finite banana width effect, in order to develop an effective NTM control

system, which would shrink seed islands to below the threshold width.

In toroidal geometry, the finite banana width effect gives rise to the neoclassical polarisation

current, induced when the magnetic island moves relative to the plasma [2]. This in turn gener-

ates a parallel current perturbation, which may or may not stabilise the island depending on the

conditions. The finite banana width effect also accounts for the radial transport of particles and

heat, which tends to partially restore the flattened pressure profile near the island separatrix [3].

For a sufficiently small island, this reduces the perturbation in the pressure gradient-dependent

bootstrap current which in turn reduces the drive for the NTM growth. Our goal is to investigate

the full effect of the finite banana width using drift kinetic theory. We have developed a numeri-

cal code with a novel iteration scheme to calculate the electrostatic potential perturbation using

quasineutrality as well as the momentum conservation term in a model collision operator. An

accurate determination of the electrostatic potential is vital for calculating the neoclassical po-

larisation current, while the momentum conservation term is needed for an accurate calculation

of the bootstrap current perturbation. In our calculation, we have relaxed the small ion banana

width assumption, compared to the island width (i.e. ρbi∼w). This enables us to explore the full

particle orbit physics and its consequences for the island evolution. In this paper, we examine

the ion response to the magnetic island perturbation using the drift kinetic equation, expanding

in the small ratio of the island width to the tokamak minor radius: ∆ = w/r� 1, while retaining

the ordering ρbi = ε1/2ρθ ∼ w. We also demonstrate that our numerical code can produce a
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solution that is a function of a modified “flux” function, Ωs, which is shifted from the perturbed

flux surfaces by a distance O(ρbi), as indicated by analytic theory.

Drift Kinetic Equation

Figure 1: Magnetic is-

land geometry, with con-

tours of constant Ω.

We work in the standard magnetic island coordinate system,

(ψ,θ ,ξ ), where ψ , the poloidal magnetic flux, serves as the radial co-

ordinate, θ is the poloidal angle that measures the distance along the

helical equilibrium magnetic field lines, and ξ is the helical angle that

measures along the length of the island (Fig.1). For a single helicity

magnetic island perturbation, the perturbed magnetic flux is described

by Ω = 2(ψ −ψs)
2/w2

ψ − cosξ , where ψs is the flux at the rational

surface where the island is located, w2
ψ = 4ψ̃qs/q′s, ψ̃ describes the

perturbation amplitude, qs is the safety factor and q′s = dq/dψ|s. We

solve the drift kinetic equation by expanding it in terms of ∆ = w/r.

We seek a local solution around the rational surface, assuming the

following form:

fi =

(
1− eΦ

Ti(0)

)
FMi(0)+Gi, FMi(0) =

ni(0)
π3/2v3

thi(0)
exp
[
− v2

v2
thi(0)

]
, (1)

where (0) indicates quantities evaluated at the rational surface, Φ is the perturbed electrostatic

potential, and Ti =miv2
thi. As in previous analytic works [2, 4], the perturbation can take the form

Gi =F ′Mi(0)pφ +gi, where F ′Mi(0)=FMi(0)
[
1+(v2/v2

thi−3/2)ηi
]
/Li, Li =(dni/dr)/ni(0) and

ηi = LTi/Lni. gi = ∑k ∆kgk is the non-adiabatic response to the island perturbation, pφ = ψ −

Iv‖/ωc is the toroidal canonical momentum, which is a conserved quantity on particle orbits,

v‖ = σv
√

1−λB, σ = v‖/|v‖|, λ is the pitch angle and I(ψ) = RBT . We work in the island rest

frame such that there exists an equilibrium radial electric field, so that Φ = Φ′eqψ +ϕ , where

ϕ is the potential perturbation. Using Eq.(1), we find that the leading order contribution to the

drift kinetic equation comes from the parallel streaming and magnetic drift response:

v‖
Rq

[
∂g0
∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

(
v‖
ωc

)
∂g0

∂ψ

]
= 0, (2)

so that g0 = ḡ0(pφ ,ξ ,v,λ ).

The solution for g0 is obtained from the O(∆) contribution to the drift kinetic equation, which

includes the island physics, E×B response and collisional effects. The higher order term in g1

(i.e.
∂g1
∂θ

∣∣∣∣
pφ

) can be annihilated by making use of the periodicity in θ at fixed pφ (hence varying

ψ) for the passing particles, and the particle conservation at bounce points for trapped particles.
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The result is an orbit-averaged equation for g0:

[
pφ Θ(λc−λ )+ωD−ωE,ξ

] ∂g0
∂ξ

∣∣∣∣
pφ

−
[
mψ̃ cosξ Θ(λc−λ )−ωE,ψ

] ∂g0
∂ pφ

∣∣∣∣
ξ

−

〈
Rq
v‖

C(g0 +F ′Mi pφ )

〉
θ

= F ′Mi
[
mψ̃ cosξ Θ(λc−λ )−ωE,ψ

]
,

(3)

ωE,ψ =

〈
ρθ

v‖

∂Φ

∂ξ

〉
θ

, ωE,ξ =

〈
ρθ

v‖

∂Φ

∂ψ

〉
θ

, ωD =
〈
ρθ v‖

〉
θ
+

q′s
qs

〈
∂

∂ψ

(
ρθ v‖
ωc

)〉
θ

, (4)

where λc corresponds to the trapped/passing boundary in the pitch angle space and C(g) is

a momentum-conserving model collision operator. Eq.(3) can be written more compactly by

introducing the modified flux function, ΩS = p2
φ
/2w2

ψ−cosξ . Since
∂F ′Mi pφ

∂ξ

∣∣∣∣
pφ

= 0, we obtain:

pφ Θ(λc−λ )
∂G0

∂ξ

∣∣∣∣
Ωs

+(ωD−ωE,ξ )
∂G0

∂ξ

∣∣∣∣
pφ

+ωE,ψ
∂G0

∂ pφ

∣∣∣∣
ξ

=

〈
Rq
v‖

C(G0)

〉
θ

. (5)

Analytic Limit

We now demonstrate that the orbit averaged equation (5) produces the same solutions in the

limit of small ion banana width as the ones in [2] . We make a secondary expansion in terms of

δi = ρbi/w� 1, and consider the leading order solution to Eq.(5), G0,0. In this limit, we may

assume that the electrostatic potential is a function of the perturbed flux function to leading

order, i.e. Φ = Φ0(Ω)+Φ1, Φ1/Φ0 ∼O(δi), where Φ1 describes the correction to the potential

originating from the particle orbit effects. Then, writing ωE,ψ and ωE,ξ in terms of Φ0 and Φ1:[
Θ(λc−λ )−

〈
ρθ

v‖

∂Φ0

∂Ω

〉
θ

]
pφ

∂G0

∂ξ

∣∣∣∣
Ωs

+(ωD−δωE,ξ )
∂G0

∂ξ

∣∣∣∣
pφ

+δωE,ψ
∂G0

∂ pφ

∣∣∣∣
ξ

=

〈
Rq
v‖

C(G0)

〉
θ

, δωE,ξ =

〈
ρθ

v‖

∂Φ1

∂ψ

∣∣∣∣
ξ

〉
θ

, δωE,ψ =

〈
ρθ

v‖

∂Φ1

∂ξ

∣∣∣∣
ψ

〉
θ

.

(6)

Then, O(δ 0
i ) terms in Eq.(6) yield:[

Θ(λc−λ )−

〈
ρθ

v‖

∂Φ0

∂Ω

〉
θ

]
pφ

∂G0,0

∂ξ

∣∣∣∣
Ωs

=

〈
Rq
v‖

C(G0,0)

〉
θ

. (7)

In the low collision frequency limit νii/εω� 1, where νii is the ion-ion collision frequency and

ω is the island rotation frequency (in our island rest frame, this is expressed in terms of the equi-

librium radial electric field), the solution is: G0,0 = (ωT
∗ /ω∗− eΦ′eqLi/Ti)(FMi(0)/Li)H(Ωs),

where ωT
∗ /ω∗ = 1+(v2/v2

thi− 3/2)ηi and H(Ωs) is a free modified flux function, which is to

be determined from the collisional constraints on G0,0. Then, Taylor-expanding ΩS about Ω in
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the limit of small ρbi, we find that the full ion distribution function as determined from Eq.(5)

is:

fi =

(
1− eΦ

Ti

)
FMi +

(
ωT
∗

ω∗
−

eΦ′eqLi

Ti

)
FMi

Li

[
H(Ω)−ρθ v‖

∂H
∂ψ

]
+G1,0. (8)

If we compare with the solution from [2]:

fi =

(
1− eΦ

Ti

)
FMi +

(
ωT
∗

ω∗
−

eΦ′eqLi

Ti

)
FMi

Li

[
h(Ω)−ρθ v‖

∂h
∂ψ

]
+ρθ v‖

eΦ′eq

Ti

FMi

Li
+ h̄i, (9)

we see that the two are identical in form, if H(Ω)→ h(Ω) and G1,0→ h̄i (the additional term

in Eq.(9) comes from transforming the solution from the E×B rest frame to the island rest

frame). Therefore, we have verified that our equation (5) can reproduce the correct solution in

the same limit as previous analytic works.

Summary

Figure 2: Numerical solution for Gi on ψ−ξ plane.

Contours are of constant Ωs Note that the colour

contour aligns well with the contours of Ωs, demon-

strating that G = G(Ωs).

We have demonstrated that our new drift

kinetic equation for calculating the ion re-

sponse to the island perturbation produces the

same form of solution in the limit of small

ion banana width as the previous analytic

work. In order to explore the new physics, we

must solve Eq.(5) in full, which requires a nu-

merical treatment. This will provide a valu-

able benchmark for a numerical solution of

the full Eq.(5). The code under development

does produce a solution that is a function of

the modified perturbed flux, i.e. G = G(Ωs)

(Fig.2). However, there are differences in the

numerical and analytic limit results for the perturbed ion density and parallel flow profiles,

which need to be understood. Once the benchmarking of our code is complete and its algorithm

fully verified, we will be able to explore the new physics.
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