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Simulation of neutral particle fluxes from fast ions in the JET tokamak
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Accurate determination of plasma composition is a vital measurement both in present exper-
iments as well as eventual burning plasma operation, where control of the isotope ratio of the
deuterium and tritium fuels will be critical. One diagnostic method for determining the isotope
ratio is neutral particle analysis (NPA), where neutral particle fluxes resulting from charge ex-
change reactions inside the plasma can be used to infer the isotope ratio. The measured neutral
fluxes are, however, distorted by energetic particles such as those resulting from NBI heating.
The fluxes from the slowing down beam ions mask the signal from the bulk plasma, hindering
analysis of the main plasma ions, with the contamination increasing with greater NBI power.
The work presented here aims to characterize the neutral fluxes due to the NBI ions in order to
facilitate isotope ratio measurements under these conditions.

NPA diagnostics have previously been used to determine the isotope ratio at the JET tokamak
with some limited simulations for the fast ion neutral fluxes [1, 2]. Some of the tools used
in this study have also previously been used for simulating neutral fluxes from NBI ions in
experiments at the ASDEX Upgrade tokamak [3, 4], where discrepancies between simulations
and measurements were primarily attributed to the limited neutral density model used in the
simulations. Thus in this work, the focus was on using detailed models for the neutral density

profiles, particularly in the edge region.

JET NPA diagnostic and simulation tools

The low-energy neutral particle analyzer (KR2) [5] installed at JET simultaneously measures
the neutral particle fluxes for hydrogen, deuterium and tritium at energies from 1 keV upwards.
The diagnostic has a horizontal line of sight normal to the magnetic axis along the outer mid-
plane (figure 1). Due to the radial orientation the diagnostic only measures fluxes due to trapped
ions with a small pitch § = V| /v. In the results presented here, the NPA was configured to

measure deuterium fluxes between 5-40 keV.

*See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint

Petersburg, Russia.
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Figure 1: Layout of the neutral beams and the low-energy NPA diagnostic KR2 at JET (left) and
the sight line of the NPA (right).
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Figure 2: Electron density (left) and temperature (right) profiles used in the simulations for the
JET pulse #85413.

o

The fast ion slowing down distribution resulting from the deuterium NBI injection was mod-
elled using the NBI ionization code BBNBI [6] and the orbit-following Monte Carlo code
ASCOT [7]. The recycling neutral densities were based on EDGE2D-EIRENE simulations [8],
while the core recombination neutral density was scaled from results presented in [1]. The neu-
tral densities due to the NBI beams intersecting the NPA line of sight were modelled using
BBNBI.

The synthetic neutral fluxes were simulated using a standalone synthetic NPA diagnostic
based on the ASCOT code. The code samples an arbitrary nonisotropic 4D distribution repre-
senting the fast ions within the diagnostic viewing cone. The neutral flux is accumulated from
samples whose pitch is such that the resulting neutral can reach the detector. Attenuation of the
signal is calculated using ADAS neutral beam-stopping coefficients. The synthetic diagnostic
code can also separately simulate the neutral fluxes resulting from the isotropic thermal plasma

ions.

Results

The JET discharge #85413 studied in this work features a high-density H-mode plasma with
a core density of 12- 10! 1/m? and temperature of 3 keV (figure 2). 20 MW of NBI power was
applied in the pulse with no ICRH heating, making it well suited for ASCOT NBI modelling.
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Figure 3: ASCOT-simulated NBI ion slowing-down density (left) and EDGE2D-EIRENE and

BBNBI predicted neutral densities (right) along the NPA sight line.

Due to the high plasma density, the NBI beam cannot penetrate deep into the plasma, resulting
in an NBI ion density that is peaked near the edge (figure 3, left). Likewise, the neutral density
is peaked near the edge because of the high recycling neutral contribution (figure 3, right). Due
to the high density and unfavourable geometry, with the NBI and NPA lines of sight intersecting
only on the high field side of the plasma, the beam neutral density was found to be negligible.
Because of these factors, the resulting neutral flux would be expected to primarily be attributed
to CX reactions with the recycling neutrals.

The resulting simulated neutral fluxes were found
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ol — 5 Temslbnomrits | to be within a factor of two of the measured fluxes
| (figure 4). The fluxes due to thermal ions agree well
with the measurements at the two lowest energy
channels, while the fluxes due to NBI ions dom-

inate at energies greater than 10 keV. A sensitiv-

ity scan was performed by artificially changing the
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Figure 4: Simulated neutral fluxes due to width of the recycling neutral profile while keeping

the thermal and NBI ions together with the integrated density constant. This resulted in sig-

. nificant changes in the corresponding neutral fluxes
experimental results.

from the fast ions (figure 5), indicating that the neu-
tral flux indeed originates from the edge. Due to their low energy, and corresponding low plasma
transparency, the neutral fluxes from thermal ions are likewise constrained to the edge of the

plasma.

Discussion
While the synthetic neutral fluxes were found to be in good agreement with the experimental

results in the simulations presented here, the sensitivity to the recycling neutral profile indicates
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Figure 5: Simulated fast ion neutral fluxes (right) using artificially narrowed and widened recy-

cling neutral density profiles (left) together with experimental results.

that detailed modelling would be required to precisely model the fast ion NPA signal. However,
the results indicate reasonable prospects for using the lowest energy channels for isotope ratio
measurements of thermal ions, where the NBI contamination could likely be further lessened
by reducing heating power during measurement and favouring the tangential NBI, with higher
injection pitch angle, to reduce the near-zero pitch contribution. The higher energies could be

used to diagnose the composition and characteristics of the injected beam ions themselves.
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