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Introduction

In general, the orbit-averaged radial magnetic drift is non-zero for trapped particles in stel-
larators. Stellarators in which the orbit-averaged radial magnetic drift vanishes are called om-
nigeneous. Although exactly omnigeneous configurations are not mathematically forbidden,
achieving perfect omnigeneity in practice requires such an accuracy in the design and place-
ment of the coils that, even in future devices, deviations from omnigeneity are unlikely to be
negligible. These deviations are more deleterious at small collisionalities. The 1/v regime has
been recently treated in stellarators close to quasisymmetry [1], which are particular cases of
stellarators close to omnigeneity. Here, the techniques learnt in [1] are generalized to stellarators

close to omnigeneity and applied to collisionality values below the 1/v regime.

Omnigeneous stellarators and stellarators close to omnigeneity

We use spatial coordinates {y, c,/}, where y determines the flux surface, & is a poloidal
angle (this is simply to fix ideas; ¢ might have a different helicity and the treatment would be
analogous) that labels magnetic field lines once y has been fixed, and [ is the arc length over
the magnetic field line selected by fixing ¥ and «.

Passing particles always have vanishing average radial magnetic drift. A stellarator is called
omnigeneous if the orbit-averaged radial magnetic drift is zero for all trapped particles [2]. This

is equivalent to saying that do,J = 0, where

)
JZZ/ |v|‘]dl (1)
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is the second adiabatic invariant, and /;; and [, are the bounce points. Hence, a stellarator is
omnigeneous if and only if J is a flux function.

Below, we write magnetic fields for stellarators close to omnigneity as

B =B+ 0B, )
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where B is omnigeneous and 6B is a perturbation with 0 < § < 1 and B; ~ By. We assume

that [VInBy|~! ~ |[VInB|~! ~ L.

Low-collisionality drift-kinetic equation: p;, < v;, < 1

Let us use coordinates {v,A,c} in velocity space, where v is the magnitude of the veloc-
ity, A = v} /(v*B) is the pitch angle coordinate and o is the sign of the parallel velocity. In
the standard drift-kinetic expansion, the distribution function F;(y, @,l,v,A,0) is expanded as
F,=F¢+F+ O(pl-*zFio), where Fj; ~ pi«Fjo, Fj is a Maxwellian distribution with density 7;
and temperature 7; constant on flux surfaces and p;, < 1 is the ion gyroradius over Ly. The
electrostatic potential is expanded as @(y, o, 1) = @o(y) + @1 (v, e, 1), with @o(y) ~ T;/(Zie)
and @1 /@p ~ pi«. Here, Ze is the charge of the ions and e is the proton charge.

The drift-kinetic equation for the non-adiabatic component of the distribution function G;; =

Fi+ (Ziegy | T))Fy is!
VB VG +Yivu,i- VyFo = Ci{Gall, )

where vy ; is the ion magnetic drift,

n' miv? 3\ T Zeg)
Y, = & LA et ST 4V} 4
Lo ( 2T; 2) Ln @

primes stand for differentiation with respect to y and Cf; is the linearized ion-ion collision opera-
tor. In this paper we focus on ion transport and assume that a mass ratio expansion \/W <1
has been taken, so that the ion-electron collision term has been dropped. Here, m, is the electron
mass and m; is the ion mass.

Define the ion collisionality as v;. = V;;Lo/vs;, where v;; is the ion-ion collision frequency,
vii = +/T;/m; is the ion thermal speed. If v;, < 1, one can perform an expansion in powers of
the collisionality. To lowest order one finds that G;; is homogeneous along the coordinate /. The
function Gj; is found from averages of the drift-kinetic equation to next order in V;,. For trapped
particles we average over the orbit,

b2 o
/l ‘VH| Cii[Gil]dl = /l |VH| VMJ'-Vllldl T,'F,'(). (5)
b

1 bl

For passing particles we take the flux surface average, that we denote by (>W That is,
(Bv'c; [Gi1]>w ~0. ©6)
From the last two equations, it is clear that G;; ~ vl-;l pixFjo. This defines the 1/v regime.

I'The ambipolarity condition and the quasineutrality equation that allow to solve for ¢y and ¢ are discussed in

[3].
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Drift-kinetic equation for collisionalities below the 1/v regime: v;. < p;.

In general, if v;, < pj. the drift-kinetic expansion breaks down because G;; becomes as large
as Fjp. In addition, the drift-kinetic equation becomes radially non-local because there is no
reason, in principle, to neglect terms like vy ;- Vydy G (in this paper we do not discuss large
aspect ratio effects). However, if 6 < 1 there is a rigorous way to carry out the expansion
and to derive a radially local drift-kinetic equation [3]. If § < 1, it is possible to show that

G;1 = gi(y,a,v, A) in the trapped region and that it vanishes in the passing region. The correct
(1) (1)

ansatz to deal with the regime v, < pjx is g; = 0g; '+ ..., where g;

take @) = 6(p1(1) +..., where (pl(l) ~ Q.

~ Fjp. Analogously, we

Expanding in &, we find a radially-local drift-kinetic equation valid® for v;, < pj,. Namely,

ZieW! [lo dl £(0)
m,-ct/z _)|Cii [gi

1
o b10 ’VH
where W, is the toroidal magnetic flux over 27, /510 and ;5 are the orbit bounce points calcu-

lated using By, c is the speed of light,
an(O) _ /lhzo ;LV&V,BQ + ZZie/(miv) 81//(/)0 iy
I

b1o \/1—ABy

and

o /z,,zo AvduBi +2Zie/(miv) Ao\
I =

lblo 11— QLB()

We have employed a superindex (0) for quantities corresponding to By and a superindex (1) for

dl.

perturbed quantities.

Let us define the poloidal frequency wq = m;cdyJ®)/ (ZiengflEO)), where ’L'IEO) is the orbit
time in the magnetic field By. Typically, g ~ pi«vii/Lo and the drift-kinetic equation is solved
by expanding in v;;/®y ~ Vi./pix < 1. To lowest order in the v;;/®y expansion one obtains

gl(l):go—l—...,with

1 1 21
_ m_ L Ddor ) T Fo.

Energy flux when v;, < p;.
It is easy to realize that gg does not contribute to the energy flux, Q;. The physical effect that
explains neoclassical transport when v;, < p;. depends on certain properties of @y.
Customarily, for non-zero ¢}, there exists a minimum value of v for which @y = 0 for some
value of A (the value of A for each v is usually unique). We denote this value of v by vin;,. When

2As explained in [3], it is expected that this drift-kinetic equation also ceases to be valid for sufficiently low

collisionality.
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V > Viin, We define A,(y,v) as the value of A such that wy(y,v,A,) = 0. Of course, A, is a
function of y and v, 4, = A, (y,v).

(i) \/V regime
If vinin > vy, transport is dominated by the discontinuity of g at the trapped/passing bound-
ary. This discontinuity originates a collisional layer of size AA ~ B, '(v;/ wg)'/?, and the energy

flux can be shown to scale as

1/2
V..
2 Vi 2 4r5r—1
Qi,ﬁNa 3/2pi*nimiv,iL0 Sll/,

WO ¢

where Sy is the area of the flux surface. This is the /v regime.

(i1) Superbanana-plateau regime
If Vinin < vy, transport is dominated by the divergence of go at the resonant values of the
pitch-angle coordinate, A,(y,v). In this case, the energy flux turns out to be independent of the

collisionality,

2 3
Qi sb—p ~ 0 Pisnim;v;:Sy.

Additive formula for the energy flux
Since the layers corresponding to the /v and to the superbanana-plateau regimes are small
and located at different regions of phase space, their contributions to transport are additive. This

means that we can write, for v;, < pis,

Qi - Q@W + Qi,sb—p-

An explicit expression for this formula is provided in [3].

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 under grant
agreement No 633053. The views and opinions expressed herein do not necessarily reflect those

of the European Commission.

References

[1] L Calvo et al., Plasma Phys. Control. Fusion 56, 094003 (2014).
[2] J. R. Cary et al., Phys. Plasmas 4, 3323 (1997).
[3] L. Calvo F. I. Parra, J. L. Velasco and J. A. Alonso, “The effect of tangential drifts on

neoclassical transport in stellarators close to omnigeneity", in preparation.



