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Introduction

Filamentary structures in the scrape-off layer (SOL) of fusion devices (so called blobs) are
expelled from the main plasma and may lead to enhanced erosion at wall components [1]. In
order to measure the blob propagation characteristics, Lithium Beam Emission Spectroscopy
(Li-BES) can be used in the plasma edge [2]. An improved understanding of blob dynamics can
be obtained by comparing a radiative-collisional Li-BES model (SIMULA) [3] combined with
a 2D turbulence code (HESEL) [4] constituting a synthetic Li-BES diagnostic. HESEL is a self-
contained, energy conserving model, derived from Braginskii’s equations, and covers an area in-
cluding the last closed flux surface (LCFS) and the SOL. A snapshot of a HESEL density output
is shown in Figure 1a (Density Case), where the plane is spanned by the radial (vertical) and the
poloidal (horizontal) axis. The other three images show different synthetic 2D-Li-BES emission
signals for the density data in Figure 1a. The beam is injected from the top (x = 0 cm refers to

LCFS).  Figure Ib shows the re-
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Blob Characterization

The characterization of the blobs in the dif-

ferent cases has been performed via a con- )
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separatrix (x = Ocm). For this channel, a

spatio-temporal average I(x,Ar) of the syn- Figure 2: Conditionally averaged emission: a) Av-
eraged blob in time and space, b) blob representa-
tives with COM location, c) COM and average veloc-
ditional averaging in Figure 2a. The blob ity (dashed), d) self-correlation time T of the blob.

thetic beam emission is obtained after con-

velocity is defined by the movement of the
center of mass (COM) position X¢

[ xI(x,At)dx
= TIn.Andx M
which is indicated by the vertical lines in Figure 2b for the relative time instances marked in
Figure 2a along with the respective profiles /(x,Ar). The velocity of the blob is then obtained
from a linear fit of the center of mass position and shown in Figure 2¢c. The maximum blob ve-
locity is defined by the steepest gradient of the COM trajectory. In order to calculate a reliable
velocity, the time window for the conditional average should be chosen to be 2—3 times the self
correlation time (see Figure 2d), which is the effective time a blob appears in front of a detector
element. The blob width p, is then defined as the half width at half maximum of 7(x,Ar) at
At = 0. A further output of the analysis is the fluctuation amplitude An/n or Al /I, respectively.

Error estimations are done via statistical analysis of the variation at different poloidal positions.

The blobs can be characterized for different radial positions by changing the position of the
reference channel. The density results can now be compared to the synthetic diagnostic results

in radial profiles. Figure 3a shows the radial profile of the blob widths. The blob width deduced
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from the emission is about twice the value blob width p Average velocity v

a);

obtained from the Density Case. This is

because of the smearing effect described €

above. Figure 3b shows, that the blob ve-

locities increase for x > 1cm, but start to
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Figure 3: Radial characterization for a simulation with

diagnostic. This implies, that the blob fre- B, =247 ¢=5.5, Ly = 11.8m: a) Blob width, b) Av-

quency is underestimated, if Li-BES is €798¢ blob velocity, c) blob frequency, d) relative blob
’ amplitude.
used. The blobs also have higher amplitude

of factor 2 (see Figure 3d) in the Density Case. The reason for this discrepancy may be the path
integration effect of the Li,-state occupation along the beam, which leads to a higher average
emission and therefore to a smaller fluctuation amplitude. Figure 3 also shows, that all three
emission cases agree well for the radial characteristics. It would thus be sufficient to compare

only the Real SNR and the Density Case.

Blob Velocity Scaling

The estimated blob velocity can be compared to the theoretically predicted scaling laws, which
predict, that the blob velocity depends on the blob width py, the relative amplitude 6n/n or
machine parameters like parallel connection length L;; and the major radius R. They describe
the damping of the blobs via inertial effects due to blob size [7] or sheath-connection with cold

ions [8] and warm ions [9]. Theiler et al. [10] combines inertial and sheath-connection effects
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where the last term in the denominator can be neglected due to low ion-neutral collision fre-

for cold ions to the formula

Vr

2)

quency V;, in the investigated plasma [2]. Here, ¢, refers to the ion sound speed ¢y = /T, /m;,
with the electron temperature 7, and ion mass m; and pg corresponds to the Larmor radius. For

different magnetic fields and connection lengths the normalized velocity and the blob width was
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evaluated for a fixed reference position.
The result can be seen in Figure 4. Fig-
ure 4a shows the Density Case. The scaling
predictions (circles) of Krashenninikov are
above the maximum and average velocity
of the blobs, whereas the maximum blob
velocity is predicted well by the Theiler
and Manz scaling. Theiler and Manz pre-

dict a much smaller velocity in the range
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Figure 4: Velocity scaling depending on blob sizes for
all four cases. The velocities are normalized by the ion
sound speed c;, the blob sizes by the Larmor radius p;.

here. Since the average blob sizes in the
Density Case are much smaller than for the
emission cases, the scaling predicts higher
velocities. The blobs appear smaller due to a detection limit of the Li-BES system. In the other
three cases the scaling laws coincide for larger blobs and the scaling laws predict velocities
between the maximum blob velocity (red) and the average velocity (black). This has also been
observed by Birkenmeier et al. [2]. In addition, for the overestimated blob size in the emission
cases, the scaling laws underestimate the blob velocity if no correction for blob width and am-

plitude is applied.

Summary and Conclusion

The synthetic Li-BES system included in the first principle model HESEL shows, that it can
be used for quantitative analysis of blob characteristics. It is suitable to be compared to ex-
perimental Li-BES results. The results of the radial analysis affirm, that the synthetic Li-BES
measurements deliver reliable blob velocities. The velocity scaling investigations show a good

agreement with the scaling laws, but need to be corrected for a true representation.
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