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Introduction
Neoclassical toroidal viscosity (NTV) [1-3] caused by non-axisymmetric magnetic perturba-
tions has an important influence on plasma stability and transport in tokamaks. In this paper,
a method to calculate non-ambipolar radial diffusion coefficients, which determine the NTV
torque in resonant transport regimes, is presented. In earlier calculations, these regimes have
been shown to be important for ion NTV in ASDEX-Upgrade [4] in the case of medium scale
perturbations created by a coil system for ELM mitigation (resonant magnetic perturbations or
RMPs). For finite perturbation amplitudes, nonlinear attenuation can reduce the torque predicted
there by the NEO-2 and NEO-RT (resonant transport) code within quasilinear approximation.
To further analyze these effects, the quasilinear description based on Hamiltonian theory using
action-angle variables [5, 6] used in the code NEO-RT has been extended to include nonlinear
attenuation. The mechanism for this attenuation can be summarized as follows.
In presence of non-axisymmetric magnetic perturbations, additional orbit classes arise, e.g. su-
perbanana orbits where bananas play the role of the guiding center. These orbits are traversed
with a nonlinear bounce frequency ωbN. For the kinetic description at low collisionalities, where
ωb is much larger than the collision frequency νeff, there are two limiting cases: If the nonlinear
orbit frequency ωbN is much smaller than νeff, the nonlinear phase φ is frequently random-
ized by collisions and one obtains quasilinear resonant transport regimes. In particular, this is
the case for formally infinitesimal perturbation amplitudes. If ωb becomes larger than νeff, the
solution gradually changes to the corresponding nonlinear regime.
The presented method provides a consistent description of these resonant transport regimes in
the mentioned limiting cases and the transition region. In addition to superbanana and super-
banana plateau regime, the description of general nonlinear drift-orbit resonance regimes is
possible without simplification of the plasma geometry.

Kinetic equation, conservation laws and perturbed Hamiltonian
Using action-angle variables (J,θ), the kinetic equation for the ion distribution function f (J,θ)
takes the form

∂ f
∂ t

+{ f ,H}= L̂C f , (1)

with Hamiltonian H, Poisson brackets {·, ·} and momentum conserving collision operator L̂C.
From the generalized flux-surface averaged conservation law one obtains the expressions for
non-ambipolar radial particle flux and torque density, respectively, with

Γn =
1
S

∫
d3

θ

∫
d3J δ (r− rc){rc,H} f , T NA

ϕ =−1
S

∫
d3

θ

∫
d3J δ (r− rc)

∂H
∂ϕc

f . (2)
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Here, S is the flux surface area, r is the effective radius, rc = rc(θ ,J) = rc(r) is the particle
radial position expressed via phase space variables and ϕc = θ 3 is the toroidal canonical angle.
For a non-axisymmetrically perturbed system with H(J,θ) = H0(J) + H1(J,θ) for a single
mode m in canonical angles, H1 = Re[Hmexp(im ·θ)], a resonant angle φ = m ·θ + arg Hm is
defined, which describes the nonlinear oscillation around the resonance

Ω≡ ∂H0(J)
∂J

= m · ∂H0(J)
∂J

= 0, (3)

and absorbs the complex phase of Hm. A canonical point transformation replacing the canonical
toroidal angle θ 3 by φ yields new actions

J′k = Jk−
mk

m3
J3, k = 1,2; J′3 = J3/m3 ≡ J. (4)

Omitting the first two actions (they are invariants of motion) in the notation and expanding
around the resonance up to quadratic order with ∆J := J− Jres yields the Hamiltonian of the
nonlinear pendulum,

H(φ ,J) =
1
2

Ω
′
∆J2 + |Hm|cos(φ)+ const, Ω

′ =
∂Ω

∂J

∣∣∣∣
Ω=0

(5)

The nonlinear bounce frequency ωbN of periodic motion in φ is given by an elliptic integral. Its
maximum value is estimated by linearization around φ = 0 and is given by ωbN,max = |Ω′Hm|1/2.

Collision operator in action-angle variables and nonlinear attenuation
For computation of the non-axisymmetric part of the distribution function required for the
torque density, only scattering by field particles across resonance zones is required, which
makes it possible to represent L̂C by

L̂C f ≈ Dres
∂ 2 f

∂∆J2 , Dres = Dvv
(

1
Ω′

∂Ω

∂v

)2

+Dχχ
η

(〈
1
B

〉
b
−η

)(
1

Ω′
∂Ω

∂η

)2

(6)

The second expression for Dres includes collisional scattering coefficients Dvv and Dχχ in veloc-
ity module v and pitch angle χ and a bounce average 〈·〉b of the inverse magnetic field module.
Considering the steady-state case with a solution f0 for the axisymmetric Hamiltonian H0 and
the perturbed distribution function f = f0 + f1 in Eq. (1), one obtains the evolution equation

{ f1,H}− L̂C f1 = { f0,H1}=−m · ∂ f0

∂J
|Hm|sin(φ). (7)

Rescaling to dimensionless variables in this equation by

x≡ ∆J sign(Ω′)
∣∣∣∣ Ω′

Hm

∣∣∣∣1/2

, D≡ Dres |Ω′|1/2

|Hm|3/2 , g = f1

∣∣∣∣ Ω′

Hm

∣∣∣∣1/2(
m · ∂ f0

∂J

)−1

, (8)

an equation depending only on one parameter D results with

x
∂g
∂φ

+ sinφ

(
∂g
∂x

+1
)
−D

∂ 2g
∂x2 = 0. (9)
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The torque density (2) is proportional to thermodynamic forces A1,A2 as follows,

T NA
ϕ =

nαeα

c
dψpol

dr
(D11A1 +D12A2), A1 =

1
nα

∂nα

∂ r
+

eα

Tα

∂Φ

∂ r
− 3

2Tα

∂Tα

∂ r
, A2 =

1
Tα

∂Tα

∂ r
.

(10)
The notation here follows the quasilinear version in [5, 6]. For each canonical m, diffusion coef-
ficients D11 and D12 are given by an integral along the resonance in phase space parameterized
by normalized velocity u = v/vT and η = v2

⊥/(v
2B),(

D11
D12

)
=

π3/2n2c2vT

e2
αS

dr
dψpol

∫
∞

0
duu3e−u2

τb|Hm|2
∣∣∣∣m2

∂ωb

∂η
+n

∂Ω3

∂η

∣∣∣∣−1(
1
u2

)
Θ(D). (11)

The result differs from the quasilinear case by the nonlinear attenuation parameter

Θ = Θ(D) =− 1
π2

∞∫
−∞

dx
π∫
−π

dφ sin(φ)g(x,φ). (12)

Numerical implementation, results and discussion
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Figure 1: Attenuation factor Θ (�) depending
on diffusion parameter D. Quasilinear (-) and
nonlinear limit (- -) Θ≈ 1.7555267 ·D.

Results including nonlinear attenuation were obtained
for the circular tokamak used in [5, 6] using an ex-
tended version of the code NEO-RT that has been orig-
inally developed for the quasilinear case. The modifi-
cations include the nonlinear attenuation factor Θ(D)
inside the integrals for the diffusion coefficients and
the calculation of D from plasma parameters. Θ(D)
has been pre-tabulated from a numerical calculation
for the solution of Eq. (12). Plasma parameters and
perturbation amplitudes were chosen representative for
a medium sized tokamak (deuterium plasma, density
n ≈ 2 · 1013 cm−1, ion temperature Ti ≈ 1.5 keV) with
RMPs. The figures show results for computations with a perturbed magnetic field module
B = B0 · (1+ εM cos(mθ + nϕ)) by a single harmonic in Boozer angles (θ ,ϕ) with m = 0 and
n = 3, evaluated at a flux surface of aspect ratio A = 10.
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Figure 2: Normalized diffusion coefficient D11 depending on Mach number Mt at quasilinear limit (-) and for
finite relative perturbation amplitudes εM = 10−3 (- -) and 10−2 (-·). Left: All resonances including superbanana
resonance (m2 = 0) with peak near Mt = 0. Right: Only drift-orbit resonances (m2 6= 0) with peak at Mt = 0.07.

Figure 1 shows the dependency of the nonlinear attenuation factor Θ(D) of the collisional pa-
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rameter D defined in Eq. (8). For the perturbation considered here, the latter scales approxi-
mately as D ∝ νeffε

−3/2
M . In the nonlinear low-collisionality limit D� 1, the asymptotic depen-

dency Θ(D) is linear. For D� 1, the quasilinear case Θ = 1 without attenuation is reached.
In Figure 2, the the non-ambipolar radial diffusion coefficient D11 normalized by the plateau
coefficient Dp = πqv3

T/(16Rω̄2
cα) and the squared relative magnetic perturbation amplitude ε2

M
is plotted over the Mach number Mt = ΩtER/vT , which is proportional to the radial electric
field Er. Here, vT is the thermal velocity and R the major radius. To demonstrate the importance
of nonlinear attenuation for drift-orbit resonance regimes, the superbanana resonance m2 = 0,
which is dominating around the electric zero with Mt = 0, has been excluded in the right plot.
Nonlinear effects are clearly visible at εM = 10−3− 10−2 and are more pronounced at higher
perturbation amplitudes and higher absolute Mach number values.

superbanana
plateau regime

superbanana regime

Figure 3: Normalized D11 over perturbation
strength at Mt = −0.036 (superbanana reso-
nance). Quasilinear (-), nonlinear limit (- -).

Figure 3 shows the transition between quasilinear (su-
perbanana plateau) and nonlinear (superbanana) reso-
nant transport regimes at Mt = −0.036, where most
contributions are caused by the superbanana resonance.
Similar to the attenuation parameter, the normalized
diffusion coefficient reaches the quasilinear limit at
small εM < 10−3 and a nonlinear behavior at large
εM > 10−3. As visible in Figure 2 at Mt ≈ 0.07, for
drift-orbit resonances the nonlinear onset is reached al-
ready at smaller perturbation amplitudes in this case.
Conclusion and Outlook
Quasilinear calculations of NTV torque provide an
upper limit for contributions from resonant transport
regimes. In this work, the quasilinear Hamiltonian formalism underlying the code NEO-RT has
been extended to include nonlinear attenuation effects, enabling the prediction of NTV torque
in transition regimes between quasilinear and nonlinear limit. At perturbation amplitudes from
RMPs of a few tenths of a percent, analysis of nonlinear attenuation is necessary in order not
to overestimate toroidal torque in resonant transport regimes. The presented results show that
at parameters for typical medium sized tokamaks, the overall attenuation can be in the order
of tens of percents, depending on Mach number and perturbation strength. To reinforce these
claims, benchmarks with numerical codes and comparison to experimental data are desirable.
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