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Introduction

Neoclassical toroidal viscosity (NTV) [1-3] caused by non-axisymmetric magnetic perturba-
tions has an important influence on plasma stability and transport in tokamaks. In this paper,
a method to calculate non-ambipolar radial diffusion coefficients, which determine the NTV
torque in resonant transport regimes, is presented. In earlier calculations, these regimes have
been shown to be important for ion NTV in ASDEX-Upgrade [4] in the case of medium scale
perturbations created by a coil system for ELM mitigation (resonant magnetic perturbations or
RMPs). For finite perturbation amplitudes, nonlinear attenuation can reduce the torque predicted
there by the NEO-2 and NEO-RT (resonant transport) code within quasilinear approximation.
To further analyze these effects, the quasilinear description based on Hamiltonian theory using
action-angle variables [5, 6] used in the code NEO-RT has been extended to include nonlinear
attenuation. The mechanism for this attenuation can be summarized as follows.

In presence of non-axisymmetric magnetic perturbations, additional orbit classes arise, e.g. su-
perbanana orbits where bananas play the role of the guiding center. These orbits are traversed
with a nonlinear bounce frequency wyy. For the kinetic description at low collisionalities, where
@, 1s much larger than the collision frequency Ve, there are two limiting cases: If the nonlinear
orbit frequency @,N is much smaller than Vg, the nonlinear phase ¢ is frequently random-
ized by collisions and one obtains quasilinear resonant transport regimes. In particular, this is
the case for formally infinitesimal perturbation amplitudes. If @, becomes larger than Vg, the
solution gradually changes to the corresponding nonlinear regime.

The presented method provides a consistent description of these resonant transport regimes in
the mentioned limiting cases and the transition region. In addition to superbanana and super-
banana plateau regime, the description of general nonlinear drift-orbit resonance regimes is
possible without simplification of the plasma geometry.

Kinetic equation, conservation laws and perturbed Hamiltonian

Using action-angle variables (J, 0), the kinetic equation for the ion distribution function f(J, 8)
takes the form
af
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with Hamiltonian H, Poisson brackets {-,-} and momentum conserving collision operator L.
From the generalized flux-surface averaged conservation law one obtains the expressions for
non-ambipolar radial particle flux and torque density, respectively, with
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Here, S is the flux surface area, r is the effective radius, r. = r.(6,J) = r.(r) is the particle
radial position expressed via phase space variables and ¢, = 67 is the toroidal canonical angle.

For a non-axisymmetrically perturbed system with H(J,0) = Hy(J) + H;(J,0) for a single
mode m in canonical angles, H; = Re[Hyexp(im- 0)], a resonant angle ¢ = m- 0 + arg Hy, is
defined, which describes the nonlinear oscillation around the resonance

dHy(J) dHy(J)
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and absorbs the complex phase of Hy,. A canonical point transformation replacing the canonical
toroidal angle 63 by ¢ yields new actions

J,Q:Jk—Z—’;Jg, k=1,2; J= 0 /my = 1. (4)

Omitting the first two actions (they are invariants of motion) in the notation and expanding
around the resonance up to quadratic order with AJ := J — Jis yields the Hamiltonian of the
nonlinear pendulum,
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The nonlinear bounce frequency wyN of periodic motion in ¢ is given by an elliptic integral. Its
maximum value is estimated by linearization around ¢ = 0 and is given by WyN max = | Hy | 172,

Collision operator in action-angle variables and nonlinear attenuation

For computation of the non-axisymmetric part of the distribution function required for the
torque density, only scattering by field particles across resonance zones is required, which
makes it possible to represent L¢ by
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The second expression for D, includes collisional scattering coefficients D"V and D*% in veloc-
ity module v and pitch angle ¥ and a bounce average (-); of the inverse magnetic field module.

Considering the steady-state case with a solution fj for the axisymmetric Hamiltonian Hy and
the perturbed distribution function f = fo+ f1 in Eq. (1), one obtains the evolution equation

. d .
(Y ~Lefi = oo} = —m- S0 sin9). )
Rescaling to dimensionless variables in this equation by
/ 1/2 D |Q/‘1/2 Q/ 1/2 af —1
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an equation depending only on one parameter D results with
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The torque density (2) is proportional to thermodynamic forces A,A; as follows,

TNA = 2972 TR0 (DA + DA Aj=——® faZ% 0 T = T
¢ c dr (Dudr+Dids), Ay ng Or +Ta or 2Ty or’ 2 Ty Or
(10)

The notation here follows the quasilinear version in [5, 6]. For each canonical m, diffusion coef-
ficients D; and D, are given by an integral along the resonance in phase space parameterized
by normalized velocity u = v/vy and n =+ /(v*B),
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The result differs from the quasilinear case by the nonlinear attenuation parameter

0=0()=—— [ dx [ dgsin(9)s(x.0). (12)
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Numerical implementation, results and discussion )
10

Results including nonlinear attenuation were obtained
for the circular tokamak used in [5, 6] using an ex-
tended version of the code NEO-RT that has been orig-
inally developed for the quasilinear case. The modifi- 2
cations include the nonlinear attenuation factor ®(D) ’
inside the integrals for the diffusion coefficients and

the calculation of D from plasma parameters. @ (D) 102 b .
has been pre-tabulated from a numerical calculation YA .
for the solution of Eq. (12). Plasma parameters and 107 107 107 ‘g’ U

perturbation amplitudes were chosen representative for Figure I+ Attenuation factor © (L) depending
a medium sized tokamak (deuterium plasma, density op diffusion parameter D. Quasilinear (-) and
n~2-10" cm™!, ion temperature T; ~ 1.5 keV) with nonlinear limit (- -) ® ~ 1.7555267 - D.

RMPs. The figures show results for computations with a perturbed magnetic field module
B =By (1 +é&ycos(mb +ng)) by a single harmonic in Boozer angles (0, ¢) with m = 0 and

n = 3, evaluated at a flux surface of aspect ratio A = 10.
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Figure 2: Normalized diffusion coefficient D; depending on Mach number M; at quasilinear limit (-) and for
finite relative perturbation amplitudes &y; = 1073 (- -) and 1072 (--). Left: All resonances including superbanana
resonance (mp = 0) with peak near M, = 0. Right: Only drift-orbit resonances (my # 0) with peak at M, = 0.07.

Figure 1 shows the dependency of the nonlinear attenuation factor ®(D) of the collisional pa-
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rameter D defined in Eq. (8). For the perturbation considered here, the latter scales approxi-

mately as D o< veffsl\f/ >. In the nonlinear low-collisionality limit D < 1, the asymptotic depen-
dency ®(D) is linear. For D >> 1, the quasilinear case ® = 1 without attenuation is reached.

In Figure 2, the the non-ambipolar radial diffusion coefficient D; normalized by the plateau
coefficient D), = ﬂqv% / (16R(D§a) and the squared relative magnetic perturbation amplitude 81%,[
is plotted over the Mach number M; = Q,;gR /vy, which is proportional to the radial electric
field E,. Here, vt 1s the thermal velocity and R the major radius. To demonstrate the importance
of nonlinear attenuation for drift-orbit resonance regimes, the superbanana resonance m; = 0,
which is dominating around the electric zero with M; = 0, has been excluded in the right plot.
Nonlinear effects are clearly visible at &yy = 1073 — 1072 and are more pronounced at higher
perturbation amplitudes and higher absolute Mach number values.

Figure 3 shows the transition between quasilinear (su-
perbanana plateau) and nonlinear (superbanana) reso-
nant transport regimes at M; = —0.036, where most
contributions are caused by the superbanana resonance.
Similar to the attenuation parameter, the normalized
diffusion coefficient reaches the quasilinear limit at
small & < 107> and a nonlinear behavior at large
ey > 1073, As visible in Figure 2 at M; ~ 0.07, for
drift-orbit resonances the nonlinear onset is reached al-
ready at smaller perturbation amplitudes in this case.

Conclusion and Outlook

Quasilinear calculations of NTV torque provide an
upper limit for contributions from resonant transport
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Figure 3: Normalized D;; over perturbation
strength at M; = —0.036 (superbanana reso-
nance). Quasilinear (-), nonlinear limit (- -).

regimes. In this work, the quasilinear Hamiltonian formalism underlying the code NEO-RT has
been extended to include nonlinear attenuation effects, enabling the prediction of NTV torque
in transition regimes between quasilinear and nonlinear limit. At perturbation amplitudes from
RMPs of a few tenths of a percent, analysis of nonlinear attenuation is necessary in order not
to overestimate toroidal torque in resonant transport regimes. The presented results show that
at parameters for typical medium sized tokamaks, the overall attenuation can be in the order
of tens of percents, depending on Mach number and perturbation strength. To reinforce these
claims, benchmarks with numerical codes and comparison to experimental data are desirable.
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