43'Y EPS Conference on Plasma Physics P1.089

Phase dependent advection-diffusion in drift wave - zonal flow turbulence

Sara Moradi! and Johan Anderson?

U Fluid and Plasma Dynamics, Université Libre de Bruxelles, 1050-Brussels, Belgium

2 Chalmers University of Technology, SE-412 96 Géteborg, Sweden

In plasma turbulence theory, due to the complexity of the system with many non-linearly inter-
acting waves, the dynamics of the phases is often disregarded and the so-called random-phase
approximation (RPA) is used assuming the existence of a Chirikov-like criterion for the on-
set of wave stochasticity [1]. The dynamical amplitudes are represented as complex numbers,
vV = Y, +iy; = ae'®, with the amplitudes slowly varying whereas the phases are rapidly vary-
ing and, in particular, distributed uniformly over the interval [0;27). However, one could expect
that the phase dynamics can play a role in the self-organisation and the formation of coher-
ent structures as was shown in ref. [2]. In the same manner it is also expected that the RPA
falls short to take coherent interaction between phases into account. In this work therefore, we
studied the role of phase dynamics and the coupling of phases between different modes on the
characteristic time evolution of the turbulent. We assume a simple turbulent system where the
so-called stochastic oscillator model can be employed. The idea of interpreting turbulence by
stochastic oscillators goes back to Kraichnan [3]. The stochastic oscillator models can be de-
rived from radical simplifications of the nonlinear terms in the Navier-Stokes or Gyro-Kinetic
equations. In this particular case we adopt the basic equation for the stochastic oscillator model

with passive advection and random forcing from Ref. [4]:
Ky +u(t).Vy = [ (r), (1)

where u(t) and f¢(t) are random values with given statistical properties. Following the work
performed by Krommes in Ref. [4] on the impact of random flows on the fluctuation levels in
simple stochastic models, we consider the passively advected fluctuations of a scalar y such as

temperature, to obey
98w (x,1) + 8V (x,1).VEy — DV Sy = §f(x,1) )

As in Ref. [4] to keep the discussion as general as possible the linear physics is modelled
by a random external forcing & f and a classical dissipation DVZ. Furthermore, we assume
homogeneous statistics and thus only solve eq. (2) in one dimension, i.e. dy(y,?). Here, 0V is
a statistically specified random flow velocity, corresponding to the random u(¢) in eq. (1). In

the present model we ignore the spatial dependence of 6V(x,¢) = §V(¢) employing a Fourier



43'Y EPS Conference on Plasma Physics P1.089

transformation of eq. (2) we obtain the forced stochastic oscillator equation (see eq. (32) in Ref.
[4])
O OWi +i6u(t) O Wi + VO Wi = 8 fi(t) 3)

where we assumed the following

Ouy(t) = ky‘_/ exp(i6 (1)) 4)
0 fi(t) = yexp(igw(t)) (5)

In our model, thus, the random flow and forcing are assumed to be similar to oscillators with
constant amplitude and phases that varies in time with 6;(r) and ¢(z), respectively. Here, we
used the same definitions for y=2xD, and v = k’D as in Ref. [4] with k being the a constant
measuring the strength of the forcing. V is a constant measuring the strength of the random flow.
The scale dependence is introduced by the multiplication by k, and the prescribed dispersion
relation for the natural frequency, see eq. (8) in the next section. In general one can assume also
a stochastic amplitude and therefore treat V as a random value with a given statistical property,
which would allow for further degrees of freedom in the model. However at this point we aim to
study the role of phase self-organisation on the fluctuating scalar and therefore we will assume

a constant amplitude.

Phase coupling model
The dynamics of the phases are described by the two coupled first order differential equations

as

. 1
Gk(t) (Dk—|— 271' ZJ,kSln 9 9]()—1— 28¢k; (6)
l:1
O(1) = G+ (2m)~ Zszksm — ) — 589/0 (k=1,...,N). (7)

where the 6; and ¢ follow a non-linear sinusoidal coupling as in the Kuramoto model [5] with
additional linear cross coupling between the two phases. Here, the analogy is that ¢ is the phase
corresponding to a fluctuating radial excursion associated with the drift wave, and the 0 is the
phase corresponding to the oscillating zonal shear modulating the direction of excursion via
eddy tilting [7, ?]. The linear cross-coupling introduces a cross correlation between the two
motions similar to the regular Lotka-Volterra predator-prey model. This cross-coupling mimics
the interactions between the drift wave turbulence and zonal flows which have been observed to
follow self-consistent feedback loop systems similar to predator-prey trends. Here, 6(¢), and

¢k (1) denote the time derivatives of the phases of kth mode.
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The parameter € is a free parameter and modifies

the strength of the linear cross-coupling term and N

is the number of modes considered. wy are the nat-

ural frequencies of the flow assumed randomly dis-

tributed according to a Gaussian distribution with
zero mean, f(®) = exp(—a)z/ 2)/ V2r, and G are Figure 1: (a) Time evolution of sample av-
the natural frequencies of the forcing, also assumed eraged C(t) for different B at € = 5 and
randomly Gaussian distributed, where the mean is (@ F=G=1(b)F=1,G=10. (Solid

defined through a dispersion relation similar to that lines) show the results for B = 0, (dashed
of the DWs (see Ref. [16]): lines) B = 10, and (dashed-dotted lines)

<C>)=—p—

e (8) B =100. In (b) (green dotted line) shows

the case with § = 50.
where f is a free parameter of the model. In the usual DW picture this parameter represents

a gradient e.g. density gradient, 6n/dy. Jj and S;; measure the strength of the interactions
between oscillator i and k in each population, and they are assumed randomly Gaussian dis-
tributed with standard deviation defined as o9 ¢ = {F,G}/ (1/(2N)). Note, that low values F, G

correspond to weak coupling while high values correspond to strong coupling.

The numerical set up

The numerical integration of eq. (3) is performed using the Runge-Kutta 4th order scheme
(RK4) the sampling time step is At = 0.01. For initial conditions we use |dy;(0)| = 1, with the
phases of 0y (0) set to zero. For the random flow and the forcing we set the initial phases as
6r(0) = ¢(0) = 0. The mode number k is chosen following a shell model by setting k, = ko x g"
where n = 1,...N/5 where N = 125 corresponds to the number of modes, with kp = 1 and

g = 1.25. An averaging over N; = 10 samples of Jj, St is also performed.

Results of numerical simulations

Figures 1 (a and b) illustrate the time evolution of C(¢) for different phase states and increas-
ing values of . When 3 = 0 the fluctuation auto-correlation increases in time similarly in both
synchronised and a-synchronised cases i.e. F' = G =1, and F' = G = 10, respectively.The time
evolution of the norm and phase of dy; are shown in Figs. 2. Here we observe a separation
between the high and low & where in the low k, the phases sit at 0 while the phases at high k
oscillate in an small angle between 0 and 0.5 with regular frequency. The increase in f3 results
in a strong reaction of the saturation levels in both F = G =1, and F = G = 10 states, and

as the increase in § desynchronises the phases of the forcing the saturation levels converge to
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the same value for both states. Small modulations are observed in the evolution of C(¢) when
F = G = 10 which decreases in amplitude as 3 is increased.
The effect of high B on the evolution of the

phases and norms, is to increase the frequency and norm [54(k,t)]

20

the range of oscillation of the phases in a wide range
in k, while the norm is strongly affected at low k as
it decays in time.

In this work, we have introduced a non-linear
phase coupling model into the simplest model of the
passive advection-diffusion of a scalar with forcing.
The phase-coupling follows the well-established
Kuramoto paradigm that has been shown to repre-

sent systems displaying self-organisation well. Our

results show that the assumption of a fully stochas-

tic phase state of the turbulence is more relevant

for high values of scale separation with the en- Figure 2: (top) The logarithm of norm

ergy spectrum following a k~7/2 decay rate, while 2and (bottom) the phase of Oy as func-

tions of mode number k, and time 7. Here,

B =100, e =0, and F = G = 1. Sim-

for lower scale dependence the a-synchronised and

synchronised phases differ significantly, and one
ilar results are found for the case with

F=G=10.

could expect the formation of coherent modulations

in the latter case.
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