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Particle-in-Cell (PiC) methods are well-established techniques for plasma simulations. The
basic idea behind the method consists of the exchange of information between a computational
grid, in which fields are advanced in time, and a large number of particles which act as sources
for the fields.

The basic computational cycle of PiC methods is composed of four steps:

e Projection from particles to the grid: information from the particles is gathered at the grid

points in order to compute the fields.

e Field advancing: the grid quantities are evolved in time according to the preferred dis-

cretisation scheme.

e Projection from grid to particles: the advanced field quantities are used to compute forces

acting on particles.

e Particle advancing: the particles are moved in the domain according to the governing

equations of motion.

Depending on the considered physical model, the fields and the equations of motion differ in
simulations. The four basic steps, however, remain the same.

“Classical” PiC methods are usually employed in kinetic simulations of multi-species plas-
mas. Here, particles represent portions of the six-dimensional phase space where the distribution
function governs the statistics of kinetic phenomena. The electric and magnetic fields are com-
puted at the grid points by using the charge density and current, interpolated from the particles,
as sources. After the field advancing phase, the particles are pushed by the Lorentz force and
the cycle can start over. Although this approach is more fundamental, it is very expensive due
to the limited size of the grid cells imposed by the need to resolve kinetic scales.

For very large domains, commonly studied in astrophysical contexts, magnetohydrodynamics
(MHD) gives an acceptable approximation as the particles are treated like a single magnetised
fluid, subjected to the effects of electromagnetic fields, in a continuum description. Particle-

based MHD follows the same principle described above for the kinetic approach, but in this
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case the employed particles are not subjected to actual single-particle dynamics. In “fluid” PiC,
particles are, in facts, a less coarse representation of the fluid description than the computational
grid [1]. As a consequence, they also carry macroscopic properties. In pure hydrodynamics,
the projection of the conserved quantities from particles to grid allows one to compute the
advection of mass, momentum and energy throughout the domain in a Lagrangian description
of the system, without the need to move the grid. Exchange of information from particles to

grid is carried on according to
Co =Y cpWpe, (1)
p

where C, and ¢, represent the same conserved quantity in the grid and particle frames, re-
spectively. The interpolation function W, is chosen in order to guarantee that the gathering of
information on a grid element involve a sufficiently high number of particles (usually, b-splines
of some order are employed). An approximate inverse of the above relation is used when pro-
jecting grid quantities on the particles. In the grid advancing phase, any preferred formulation
of the fluid equations can be solved on the fixed grid. This avoids a number of computational
issues which are common in classical Lagrangian MHD solvers.

A full MHD particle-supported simulation has to deal with several issues affecting particle
methods. Two fundamental aspects to be addressed are the so-called ringing instability, which
occurs in explicit PiC simulations, and the preservation of the solenoidality condition by suit-

ably linking particles to the magnetic field.

The ringing instability is due to aliasing occur-
ring when information is exchanged between parti-
cles and grid. The effect in fluid PiC simulations is
to increase the interpolation error to what it would

be if there were one particle per cell. The results

obtained in this case are obviously not reliable and

' counter-measures are necessary. An effective but
Figure 1: 2D Kelvin-Helmholtz instability at

expensive solution consists of implicitly differenc-
t=2.5 with (left) and without (right) the vol-

. . ing the dynamical equations. It is desirable, how-
ume evolution procedure switched on.
ever, to avoid such level of complication in order to
obtain a fast, portable code that can run on small machines while retaining the advantage of
particle methods.
In our work, we introduce a particle volume evolution procedure in order to increase the

overall accuracy of the method. The cell volume is interpolated from the particles along with
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the other quantities. Particle volume V), is updated during the computation in a similar fashion to
the Material Point Method (MPM) for solid mechanics [2]. The evolution depends on gradients

of the velocity was V)t = V7|71 where
I = T+ AVl )

and Vu;‘jrl =Y, Vngug“.

The above procedure improves the method’s performance and brings in the additional advan-
tage of suppressing the ringing instability. The normalisation introduced in the density appears
to be enough to avoid spreading the aliasing effects on the other macroscopic variables in ex-
plicit simulations. Figure 1 shows the comparison between two simulations with and without
the volume evolution procedure switched on.

The extension of the fluid PiC to MHD has been

tackled in several ways. The first step is the def- VP
inition of a link between particles and the mag-

Lagrangian
netic field, which differs from the other macro- \\\ F—'Vg‘f”:f’”
scopic quantities as it is not a conserved variable. If .
the particles are assigned a certain fraction of mag-
netization, several divergence cleaning approaches
are allowed, which however do not always guaran-
tee that V- B = 0 be maintained to machine preci- ‘A)ﬁ;;ﬂon

o)

sion. A projection method, suitably formulated, can

satisfy such condition at the cost of solving a Pois-

son equation at each time step [3]. This is again an  Figure 2: Schematisation of the VP strategy.
undesirable aspect, especially in explicit codes, as The vector potential evolves on a separate
it greatly raises the computational cost. grid and its values at the fixed grid points are

A vector potential (VP) strategy ensures that the retrieved via interpolation.

discrete divergence-free condition be respected at

each time step [4]. In this case, however, the link between particles and magnetic field quan-
tities cannot imply conserved variables. A natural solution, however, is to relegate B (and, as
a consequence, the vector potential A) to the role of pure grid quantity. In this case, a moving
grid can be employed to advect the vector potential through the domain. In 2D, this can be done
according to the particularly advantageous equation dA,/dt = 0, as the z-component of A is the
only one needed to compute By = dyA, and By = —d,A,. The grid points of the moving grid

can therefore be assigned a value of A, which will not change during the simulation. Simple
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interpolation between the two grids allows one to retrieve the necessary value of the vector po-
tential at the fixed grid nodes and obtain a solenoidal magnetic field to be used in the momentum
equation. The procedure is sketched in Figure 2.

The use of a moving grid, although only for magnetic field-related effects, brings back the
usual downsides which are avoided by the presence of particles. While the ultimate goal remains
to link the particles to the vector potential in a direct way, the formulation is very efficient
in two dimensions as it only requires a one-way interpolation per time step, thus minimising
the dissipation and computational cost. No higher-order procedure, such as solving a Poisson
equation, is necessary.

The particle method expresses all its potential in
t=50At t=70At

— o, T— multiple applications. Where the system dynamics
ensity

13.8
I'{o would cause large deformations in the grid struc-

é ” ‘ ture, the particles can instead supply the necessary
| -
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— - - level of accuracy without degeneracy of the grid.

) ) , . This peculiarity has remarkable efficiency in, e.g.,
Figure 3: Simulation of a CME propagating

solid mechanics simulations [5]. In astrophysical
through the solar atmosphere at two consecu- 5] phy

tive moments in time. contexts, large interstellar moving structures such
as Coronal Mass Ejections (CME) can be followed
throughout their propagation in the background medium thanks to the Lagrangian formulation
of the system. This feature permits to avoid simulating a very large domain when the dynamics
of interest is involving only a small part of it. Figure 3 shows an example of application to CME
dynamics through a portion of the solar atmosphere [6].

The method is fully functional for 2D ideal MHD simulations. Extension to full 3D, non-
ideal MHD is currently being pursued with the final aim of applying the particle method to

solar-related phenomena. CMEs, solar flares, solar wind dynamics are possible candidates for

testing the potential of the strategy.
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