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1. Introduction. The representation of kinetic equations in the self-similar variables
allows one to obtain analytic solutions, which may be very helpful for testing the respective
blocks of numerical codes for transport phenomena. The examples include the steady-state
collisional kinetic equations for electrons [1] and neutral atoms [2] in a strongly inhomogeneous
plasma. The self-similarity appears to be applicable to the cases of nonlocal (non-diffusive)
correlations of the distribution function like the cases of superthermal electrons [1] and fast
neutrals produced by the charge exchange [2]. Another type of self-similarity was found [3] for
the non-steady-state Biberman-Holstein (B-H) equation for radiative transfer in resonance
atomic/ionic lines. Here again the self-similarity is expressed in terms of characteristics of
nonlocality of the B-H radiative transfer. The approach [1, 2] was extended to the case of the
steady-state B-H equation in an inhomogeneous plasma slab. It was shown that for some types
of similarity of spatial profiles of three characteristics, namely, background plasma density, line
shape width and non-radiation source of atomic excitation, the profile of excited atoms density
may be described analytically in terms of the similarity of the above-mentioned profiles. The
revealed cases of analytical solutions for the 1D transfer were suggested for testing the radiative
transfer codes in edge plasmas. Here we extend the model [4] to the case of 3D radiative transfer
in resonance lines in a plasma slab. The model gives transparent description of the nonlocal
effects in the resonance-line radiative transfer and gives reliable benchmarks for complicated
numerical modeling of superdiffusive transport.

2. Three-dimensional radiative transfer in an inhomogeneous plasma slab. We will
consider three-dimensional transfer in a slab of thickness of L. As a linear coordinate across the
slab we choose a variable z. The Biberman-Holstein (B-H) equation for radiative transfer in
resonance atomic/ionic lines in an inhomogeneous media in a three-dimensional steady-state
case in the case of isotropic radiators when probabilities of emission of a photon and the
corresponding cross-section of absorption in the rest frame of the atom doesn’t depend on the

direction of a photon, has the following form (cf. [5, 6]):
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where n(x) is the density of excited atoms, P(w, x) is the (normalized over frequency w) line
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shape of the photon emission by an excited atom at the point x, k(®, x) is the coefficient of
absorption of a photon by the atom (i.e. inverse free path of the photon) at the point x; gquench 18
the excited atom’s inverse lifetime with respect to quenching; 7 is the mean lifetime of the
atom’s excited state in the case of no quenching (so called, lifetime with respect to spontaneous
radiative decay), g(x) is the source of excitation of atoms by all processes, except absorption of
photons. Integral terms consider the emission of a photon at a distant point z1 and the absorption
at the current point z. taking into account the possibility of absorption by the other atoms on
this way.

In some cases, the transfer equations allow substantial simplification. In [1, 2] it was
shown that, under condition A/S = const, where 4 is the mean free path, S is the characteristic
scale length of variation of the distribution function (see [1, 2] for A and S definitions), it is
possible to introduce the self-similar variables allowing to find an exact analytical solutions of

the kinetic equations. Here the condition A,1/S = const can be rewritten as
(0;(2)/ny(2)) (dInw,(z)/ dz) =y = const. )
where no(x) is the density of atoms in the ground state, wz(x) is the line shape width.
Equation (1) differs from the equation in [4] only in the fact that there will be an

exponential integral Ei(x) in it instead of ordinary exponent. It means that Eq. (1) may be

transformed into the form
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Here we introduce the dimensionless parameter § = Coi/y related to optical depth,

Co1 = Bo1 o / 4w, Boi is the Einstein coefficient (for absorption). Function a(x) characterizes
emission P(w, x) and the coefficient of absorption k(w, x) line shapes. The function J(a, B) is

shown in Fig. 1. That fact that function J(a, ) tends to a constant equal 1 with f — oo (large
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optical depth) can be proved in general case. It corresponds to a full compensation of absorption

and emission of photons at a given point in the infinite media.
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Fig. 1. Function J(a, B) in (a) one-dimensional and (b) three-dimensional cases.

Following [4] we obtain the excited atoms density profile from Eq. (3):
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While the population as a function of z is obtained, one can estimate the radiative energy flux

)

density in one direction (to the right through the surface at the point z):
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where the excited atoms density is given by (5) with function J(a, B) defined by (4). The
absorption coefficient (without stimulated emission) can be written as k(®, z) = Co1n0(z)9(®, z),
where ¢(w, z) is the is the (normalized over frequency) line shape of the photon absorption.
Assuming the line shape of the following form P(o, z) = ¢(o, z) = (1/0n(z)) a(®w/wr(z)) one can
transform integral in (6) to integration over ox(z) and to introduce dimensionless variables

go)=0/0,(2), E0,E)=0/0,(z), &©z)=0/0,z,). %
Thus Eq. (6) takes form
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Let us denote the integral in the right hand side of Eq. (8) as /(a, B). For example, /(a, ) for

Doppler line shape in case of o = 1 is shown in Fig. 2.
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Fig.2. I(a, B) for Doppler line shape in case of o = 1.

3. Conclusions. The model [4] is extended to the case of 3D radiative transfer in
resonance lines in a plasma slab. Semi-analytic expression for the radiation flux is derived,
which may be applied for a wide range of radiative transfer problems in fusion and astrophysical

plasmas, including the edge plasmas in fusion facilities.
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