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1. Introduction. The representation of kinetic equations in the self-similar variables 

allows one to obtain analytic solutions, which may be very helpful for testing the respective 
blocks of numerical codes for transport phenomena. The examples include the steady-state 
collisional kinetic equations for electrons [1] and neutral atoms [2] in a strongly inhomogeneous 
plasma. The self-similarity appears to be applicable to the cases of nonlocal (non-diffusive) 
correlations of the distribution function like the cases of superthermal electrons [1] and fast 
neutrals produced by the charge exchange [2]. Another type of self-similarity was found [3] for 
the non-steady-state Biberman-Holstein (B-H) equation for radiative transfer in resonance 
atomic/ionic lines. Here again the self-similarity is expressed in terms of characteristics of 
nonlocality of the B-H radiative transfer. The approach [1, 2] was extended to the case of the 
steady-state B-H equation in an inhomogeneous plasma slab. It was shown that for some types 
of similarity of spatial profiles of three characteristics, namely, background plasma density, line 
shape width and non-radiation source of atomic excitation, the profile of excited atoms density 
may be described analytically in terms of the similarity of the above-mentioned profiles. The 
revealed cases of analytical solutions for the 1D transfer were suggested for testing the radiative 
transfer codes in edge plasmas. Here we extend the model [4] to the case of 3D radiative transfer 
in resonance lines in a plasma slab. The model gives transparent description of the nonlocal 
effects in the resonance-line radiative transfer and gives reliable benchmarks for complicated 
numerical modeling of superdiffusive transport.  

2. Three-dimensional radiative transfer in an inhomogeneous plasma slab. We will 
consider three-dimensional transfer in a slab of thickness of L. As a linear coordinate across the 
slab we choose a variable z. The Biberman-Holstein (B-H) equation for radiative transfer in 
resonance atomic/ionic lines in an inhomogeneous media in a three-dimensional steady-state 
case in the case of isotropic radiators when probabilities of emission of a photon and the 
corresponding cross-section of absorption in the rest frame of the atom doesn’t depend on the 
direction of a photon, has the following form (cf. [5, 6]): 
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where n(x) is the density of excited atoms, P(ω, x) is the (normalized over frequency ω) line 
shape of the photon emission by an excited atom at the point x, k(ω, x) is the coefficient of 
absorption of a photon by the atom (i.e. inverse free path of the photon) at the point x; σquench is 
the excited atom’s inverse lifetime with respect to quenching; τ is the mean lifetime of the 
atom’s excited state in the case of no quenching (so called, lifetime with respect to spontaneous 
radiative decay), q(x) is the source of excitation of atoms by all processes, except absorption of 
photons. Integral terms consider the emission of a photon at a distant point z1 and the absorption 
at the current point z. taking into account the possibility of absorption by the other atoms on 
this way. 

In some cases, the transfer equations allow substantial simplification. In [1, 2] it was 
shown that, under condition λ/S = const, where λ is the mean free path, S is the characteristic 
scale length of variation of the distribution function (see [1, 2] for λ and S definitions), it is 
possible to introduce the self-similar variables allowing to find an exact analytical solutions of 
the kinetic equations. Here the condition λph/S = const can be rewritten as 

    0( ) / ( ) ( ) / consln t.T Td dz n z z z      (2) 
where n0(x) is the density of atoms in the ground state, ωT(x) is the line shape width. 

Equation (1) differs from the equation in [4] only in the fact that there will be an 
exponential integral E1(x) in it instead of ordinary exponent. It means that Eq. (1) may be 
transformed into the form 
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where ܬୱ୪ୟୠሺଷୈሻ(α, β) function is defined as 
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Here we introduce the dimensionless parameter β ≡ C01/γ related to optical depth, 
С01 = B01 ħ0 / 4, B01 is the Einstein coefficient (for absorption). Function a(x) characterizes 
emission P(ω, x) and the coefficient of absorption k(ω, x) line shapes. The function J(α, β) is 
shown in Fig. 1. That fact that function J(α, β) tends to a constant equal 1 with β → ∞ (large 
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optical depth) can be proved in general case. It corresponds to a full compensation of absorption 
and emission of photons at a given point in the infinite media. 
 

   
  (a) (b) 
Fig. 1. Function J(α, β) in (a) one-dimensional and (b) three-dimensional cases. 

Following [4] we obtain the excited atoms density profile from Eq. (3): 
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While the population as a function of z is obtained, one can estimate the radiative energy flux 
density in one direction (to the right through the surface at the point z): 
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where the excited atoms density is given by (5) with function J(α, β) defined by (4). The 
absorption coefficient (without stimulated emission) can be written as k(, z) = С01n0(z)φ(ω, z), 
where (, z) is the is the (normalized over frequency) line shape of the photon absorption. 
Assuming the line shape of the following form P(, z) = (, z) = (1/Т(z)) a(/Т(z)) one can 
transform integral in (6) to integration over Т(z) and to introduce dimensionless variables 
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Thus Eq. (6) takes form 
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Let us denote the integral in the right hand side of Eq. (8) as I(α, β). For example, I(α, β) for 
Doppler line shape in case of α = 1 is shown in Fig. 2. 
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Fig.2. I(α, β) for Doppler line shape in case of α = 1. 

3. Conclusions. The model [4] is extended to the case of 3D radiative transfer in 
resonance lines in a plasma slab. Semi-analytic expression for the radiation flux is derived, 
which may be applied for a wide range of radiative transfer problems in fusion and astrophysical 
plasmas, including the edge plasmas in fusion facilities. 
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