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1. Introduction. It is known [1-4] that in the ideal magnetohydrodynamics (MHD) the
normal modes are either purely oscillating or purely growing/damped due to the self-
adjointness of the ideal MHD force operator. This fact was proved in [1-4] for the plasma
surrounded by an ideally conducting wall. Our aim is to investigate the properties of this
operator in the presence of a resistive wall, so that the boundary conditions will be the main
factor affecting the result. We do it by following the method described in [4], but now with
the energy dissipation in the resistive wall which is the main difference of our work from [4].

2. Derivations. A static (with mass velocity V, =0) toroidal magnetically confined ideally

conducting plasma (its volume is denoted as “pl”) surrounded at some distance with a
resistive wall (with its inner surface “wall-") is considered. There is a vacuum gap (“gap”)
between the plasma and the wall.

We start from the equation of energy transfer in ideal (no energy dissipation) MHD (for

example, equation (5.39) in [3])
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where p is the plasma density, V is its mass velocity, B(E) is the magnetic (electric) field,

p is the plasma pressure, j=V xB is the current density, I" is the ratio of specific heats.

Integration of (1) over the volume enclosed by the toroidal wall yields

oE _
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wall—
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Consider small displacements §&(r,,t)=r—r, of the plasma from its equilibrium
position r,. Then the perturbation of the full energy JSE =E(r, +&)—E(r,) may be expanded
to the second order in & and & (hereinafter f =of /ot) and be presented as

SE(E8) =KEE+MEL+W(EE), ©)
where K(E,E) = % [ pg7av, (5)
ol
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SW (&,&) is a functional quadratic in &, M (&,&) is a functional bilinear in &, &, and b is the

perturbation of the magnetic field (the magnetic energy 0.51' b2dV is included in SW (§,&)).

gap
The terms linear in & do not appear in (4) because VE(r,) =0 in equilibrium.
According to (2) a relation is valid

0 . ] :
S OE@8) =-F,, where F_ [ (E,xb)-ds, (6)

and E, is the electric field perturbation. In the stanw(;:all;d stability theory with an ideal wall,
n,xE, =0 and F, =0 (n, is the unit normal to the inner surface of the wall). We assume
the wall resistive. Then F~ =0, depending on E, and b at the wall. These quantities are
related to E, =—ei><B0 and b =Vx[ExB,] in the plasma through the boundary conditions at

the plasma surface: np,><E1:—(np,-§)BO and n,-(b,,—b,)=0. This coupling has a

gep
consequence that b=0 everywhere at &=0, but, maybe, b =0, if =0 at this moment.
When & =0, we have E, =0, though, maybe, b=0. This, in particular, means that F, =0 at
either £=0 or & = 0. We use this property below.

With the usage of (5), the left-hand side of the energy balance (6) can be written in the
extended form as

2K(E.8)+M(E.8)+ M(E.8) + W (E,8) + oW (5.8) @
As explained above, it must be zero at either &=0 or & =0. Therefore, M (,&) = M (&,€) =0.

The logic of the proof is the same as in [4], and the presence of F_ in (6) does not spoil it. Let

us add that £ and & are related by  p,& = F, (§), (8)

the standard equation of small oscillations that nullifies the first-order variation of (1).

Then relation (6) reduces to

2K (€ Fy (8)/ o) + W (5, E) +OW(EE) = [ (AxVxA)-dS,, ©)

wall—

where we introduced the vector-potential by E, = —A sothat b=V xA.

The combination SW (&,&) + oW (§,&) in (9) is invariant with respect to the replacement
of the arguments & and %,and, accordingly, A and A. Therefore,

2KEF(©)/p0) ~2KEF@)/p0) = | [AxVxA-AxVxA]-ds, Of

wall—

jg-FS(g)dv—jg-FS(g)dv = j (AxVxA—AxVxA)-dS;, (10)
pl pl

wall-
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where we have used the consequence of (5) and (8): 2K, K &)/ p,) = J.'I'Fs &)dv.

pl

The equality (10) consists of 2 functionals bilinear in &, & and A, A. Thus we may
substitute the pair &, A in (10) for any arbitrary vector fields q(r,t) and Q(r,t), belonging to

the same vector space as &(r,t) with A(r,t). As a result, we will have

[n-F@adv - [e-F,madVv = [ (@QxVxA-AxVxQ)-dS,, (11)

wall—

It can be derived directly from relations (8.43)-(8.44) of [3] setting there
n,xA=0,n,xQ=0. If the wall is ideally conducting, i.e. n ,xA=0,n,xQ=0, the right-

hand side of (11) is zero. Then (11) gives a conventional result [1-4] — self-adjointness of .
For a resistive wall with j, =cE,, equation (11) can be transformed in (o is the

conductivity of the wall)

[n-F@©dv-[eFmav = [ o[(Q-A)-(A-Q) v =0. (12)

wall

We can introduce a complex displacement and vector-potential by &=¢&_, +i§,, A=A, +iA,,

and the same for m and Q. We demand that the real and imaginary parts of these complex
functions belong to the same vector space as & and A. Substitution of such complex
functions in (12) does not violate this equality. This means that (11) and, consequently, (12)
are valid for complex vector-functions.

Now, substituting in (12) complex vectors n=¢&", Q=A" with * denoting complex

conjugation and assuming the time dependence oc exp(yt) with » =y +iy,, we obtain
j &-F,(£)dV — jg-FS )dV =—2iy, j o|Aldv. (13)
pl pl

wall

Now let us assume that 7, 20. (14)
Then it follows for & oc exp(yt) from (8) that

[&-F@)av - [&-F,©)dV =4iyer, [ pole dV.

This relation along with (13) gives Ve z_% I 0|A|2dv/j phlefav <0, (15)
pl

wall

This result (“a static ideal toroidal magnetically confined plasma surrounded by a resistive
wall is always stabilized”) is absolutely unrealistic. Moreover, for an ideally conducting wall

the right hand side of (15) gives a wrong result y, =0 instead of y.y, =0 [1-3]. It proves that
our assumption (14) was wrong and y, =0 for an ideal toroidal plasma surrounded by a

resistive wall.
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Now it is clear that
[n-F@©av - [&-Fmadv =0, (16)
pl pl

when n,xE; #0 and &, nocexp(yt), cos((k-r)—at), sin((k-r)—wt) a7
It can be also obtained that the growth rate must satisfy the quadratic equation [5]
7/§ij |§|2 dV +y, j a|A|2dV +C =0, where C is real.

pl wall

A small displacement of the perturbed plasma from its equilibrium trajectory in the

presence of its equilibrium rotation with a mass velocity V, is described by the Frieman-
Rotenberg equation [6, 7]

d2
PSSR O+ V@AV VIV =),
where %:%JF(VO V), K (&) is a volume force density without and F(&) - with the plasma

equilibrium rotation. It is easy to check that an equation
[n-FEAV - [&-FmdV = [[n-V-(Eay(Vy- V) Vo) =&+ V- (npy(Vy - V) Vo) AV %0
\% V,

Vv

pl pl pl

is valid (n=¢&) for the perturbation time dependencies listed in (17). This means that

equilibrium plasma rotation brings non-self-adjointness into the force operator.

3. Conclusion. It has been proved that the force operator of an ideal plasma surrounded by a
resistive wall and displaced from its position of static equilibrium is self-adjoint for most
commonly used perturbation time dependencies (17). In a general case, this property of the
force operator of a static plasma is determined only by how the perturbation varies in time.
The plasma equilibrium rotation that makes the force operator of an ideal plasma explicitly
non-self-adjoint is needed to make » (real for a plasma with V, =0) complex.
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