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1. Introduction. It is known [1-4] that in the ideal magnetohydrodynamics (MHD) the 

normal modes are either purely oscillating or purely growing/damped due to the self-

adjointness of the ideal MHD force operator. This fact was proved in [1-4] for the plasma 

surrounded by an ideally conducting wall. Our aim is to investigate the properties of this 

operator in the presence of a resistive wall, so that the boundary conditions will be the main 

factor affecting the result. We do it by following the method described in [4], but now with 

the energy dissipation in the resistive wall which is the main difference of our work from [4]. 

2. Derivations. A static (with mass velocity 0V 0 ) toroidal magnetically confined ideally 

conducting plasma (its volume is denoted as “pl”)  surrounded at some distance with a 

resistive wall (with its inner surface “wall-”) is considered. There is a vacuum gap (“gap”) 

between the plasma and the wall. 

 We start from the equation of energy transfer in ideal (no energy dissipation) MHD (for 

example, equation (5.39) in [3]) 
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where   is the plasma density, V  is its mass velocity,  EB  is the magnetic (electric) field, 

p  is the plasma pressure, j B  is the current density,   is the ratio of specific heats.  

 Integration of (1) over the volume enclosed by the toroidal wall yields  
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 Consider small displacements 00 rrrξ ),( t  of the plasma from its equilibrium 

position 0r . Then the perturbation of the full energy  0 0( ) ( )E E E   r ξ r  may be expanded 

to the second order in ξ  and ξ  (hereinafter f f t   ) and be presented as  

      ( , ) ( , ) ( , ) ( , )E K M W   ξ ξ ξ ξ ξ ξ ξ ξ ,           (4) 

where          2
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( , )W ξ ξ  is a functional quadratic in ξ , ( , )M ξ ξ  is a functional bilinear in ξξ , , and b  is the 

perturbation of the magnetic field (the magnetic energy 20.5
gap

dV b  is included in ( , )W ξ ξ ).  

The terms linear in ξ  do not appear in (4) because 
0( )E r 0  in equilibrium. 

 According to (2) a relation is valid  
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and 
1E  is the electric field perturbation. In the standard stability theory with an ideal wall, 

1 0w  n E  and 0wF    (
wn  is the unit normal to the inner surface of the wall). We assume 

the wall resistive. Then 0wF   , depending on 
1E  and b  at the wall. These quantities are 

related to 
1 0  E ξ B  and 0[ ] b ξ B  in the plasma through the boundary conditions at 

the plasma surface: 1 0( )pl pl   n E n ξ B  and ( ) 0pl gap pl  n b b . This coupling has a 

consequence that b 0  everywhere at ξ 0 , but, maybe, b 0 , if ξ 0  at this moment. 

When ξ 0 , we have 1 E 0 , though, maybe, b 0 . This, in particular, means that 0wF    at 

either ξ 0  or ξ 0 . We use this property below. 

 With the usage of (5), the left-hand side of the energy balance (6) can be written in the 

extended form as  

     2 ( , ) ( , ) ( , ) ( , ) ( , )K M M W W    ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ     (7) 

As explained above, it must be zero at either ξ 0  or ξ 0 . Therefore, ( , ) ( , ) 0M M ξ ξ ξ ξ . 

The logic of the proof is the same as in [4], and the presence of 
wF   in (6) does not spoil it. Let 

us add that ξ  and ξ  are related by    
0 ( )S ξ F ξ ,           (8) 

the standard equation of small oscillations that nullifies the first-order variation of (1). 

 Then relation (6) reduces to  
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where we introduced the vector-potential by 
1  E A  so that b A . 

 The combination ( , ) ( , )W W ξ ξ ξ ξ  in (9) is invariant with respect to the replacement 

of the arguments ξ  and ξ , and, accordingly, A  and A . Therefore, 
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where we have used the consequence of (5) and (8):          
02 ( , ( ) ) ( ) .S S

pl

K dV  η F ξ η F ξ  

 The equality (10) consists of 2 functionals bilinear in  ξ , ξ  and A , A . Thus we may 

substitute the pair ξ , A  in (10) for any arbitrary vector fields ( , )tη r  and ( , )tQ r , belonging to 

the same vector space as ( , )tξ r  with ( , )tA r . As a result, we will have   

( ) ( ) ( ) .S S w
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It can be derived directly from relations (8.43)-(8.44) of [3] setting there 

,w w   n A 0 n Q 0 . If the wall is ideally conducting, i. e. ,w w   n A 0 n Q 0 , the right-

hand side of (11) is zero. Then (11) gives a conventional  result [1-4] – self-adjointness of 
SF .  

 For a resistive wall with 1 1j E , equation (11) can be transformed in (  is the 

conductivity of the wall) 

( ) ( ) ( ) ( ) 0.S S
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dV dV dV            η F ξ ξ F η Q A A Q        (12)  

We can introduce a complex displacement and vector-potential by  ,R I R Ii i   ξ ξ ξ A A A , 

and the same for η  and Q . We demand that the real and imaginary parts of these complex 

functions  belong to the same vector space as ξ  and A . Substitution of such complex 

functions in (12) does not violate this equality. This means that (11) and, consequently, (12) 

are valid for complex vector-functions. 

 Now, substituting in (12) complex vectors *
ξη  , 

*
AQ   with * denoting complex 

conjugation and assuming the time dependence exp( )t  with 
R Ii    , we obtain 

           2
( ) ( ) 2 .S S I
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dV dV i dV       ξ F ξ ξ F ξ A     (13) 

Now let us assume that     0I  .                                        (14) 

Then it follows for  exp tξ  from (8) that  
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This relation along with (13) gives               2 2
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This result (“a static ideal toroidal magnetically confined plasma surrounded by a resistive 

wall is always stabilized”) is absolutely unrealistic. Moreover, for an ideally conducting wall 

the right hand side of (15) gives a wrong result 0R   instead of  0R I    [1-3]. It proves that 

our assumption (14) was wrong and 0I   for an ideal toroidal plasma surrounded by a 

resistive wall.  
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 Now it is clear that  

      ( ) ( ) 0,S S

pl pl

dV dV    η F ξ ξ F η         (16) 

1when and , exp( ), cos(( ) ), sin(( ) )w t t t        n E 0 ξ η k r k r  (17) 

 It can be also obtained that the growth rate must satisfy the quadratic equation [5]                  
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 A small displacement of the perturbed plasma from its equilibrium trajectory in the 

presence of its equilibrium rotation with a mass velocity 
0V  is described by the Frieman-

Rotenberg equation [6, 7]   
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V , ( )SF ξ  is a volume force density without and  ξF  - with the plasma 

equilibrium rotation. It is easy to check that an equation 

 0 0 0 0 0 0( ) ( ) ( ( ) ) ( ( ) ) 0

pl pl plV V V
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is valid ( η ξ ) for the perturbation time dependencies listed in (17). This means that 

equilibrium plasma rotation brings non-self-adjointness into the force operator. 

3. Conclusion. It has been proved that the force operator of an ideal plasma surrounded by a 

resistive wall and displaced from its position of static equilibrium is self-adjoint for most 

commonly used perturbation time dependencies (17). In a general case, this property of the 

force operator of a static plasma is determined only by how the perturbation varies in time. 

The plasma equilibrium rotation that makes the force operator of an ideal plasma explicitly 

non-self-adjoint is needed to make   (real for a plasma with 
0 V 0 ) complex.  
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