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Toroidal drift instabilities are characterised by short wavelengths perpendicular to the mag-

netic field lines and extended structures along them. They are strongly localised in the vicinity of

rational flux surfaces (that minimises field-line bending), with the flux surface spacing given by

∆ = 1/nq′ (n is the toroidal mode number and q′ is the radial derivative of the safety factor pro-

file). For high-n instabilities thought to be responsible for micro-turbulence ∆� Leq, with Leq

characterising the scale-length over which equilibrium profiles vary. The ballooning formalism

exploits this approximate invariance of rational surfaces, and expands in the small parameter

∆/Leq to reduce a system describing a 2D perturbation (in x and θ ) to two uncoupled 1D equa-

tions (in the extended field-aligned coordinate η (related to θ ) and the radial coordinate x). The

lowest order eigenvalue problem is one in η : the formalism predicts the mode structure along η

and the local eigenvalue Ω0(x,η0) = ω0(x,η0)+ iγ0(x,η0). At this order η0 is a free parameter

and is typically chosen to maximise the instability growth-rate. The next order problem is in

x: the theory uses the radial variation in Ω0(x,η0) to construct the global mode structure and

true eigenvalue Ω = ω + iγ . The higher-order theory predicts η0, which is the poloidal location

where the instability peaks.
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Fig. 1: In the pedestal, the GM (a) is more likely
to be present, but the IM (b) can be transiently ac-
cessed. Plots (c)-(d) show the mode structures of the
GM and IM, computed using a fluid-ITG code [6].

This formalism can be applied to all classes of

toroidal microinstabilities (e.g. ITG, MTM, KBM)

and in doing so predicts two distinct solutions for

each class [1, 2, 3, 4]: the Isolated Mode (IM) and

the General Mode (GM). The IM is a strongly un-

stable mode but exists under special conditions re-

quiring the stationary points in ω0(x) and γ0(x) to

be co-located. The mode typically peaks around

the outboard midplane. The GM is relatively be-

nign but occurs more generally, and is seen to peak

away from the outboard midplane (illustrated in Fig. 1). The presence of a radially varying flow-

shear can Doppler-shift the mode frequency, making the IM transiently accessible [3]. Here we

explore the dynamics of this transition using a global fluid-ITG model and present initial results

from a more self-consistent treatment, accounting for the feedback of the mode on the flow.
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These results pave the way for more accurate nonlinear simulations to understand small-ELM

regimes and intrinsic rotation in tokamak plasmas.

A simple linear electrostatic fluid-ITG model [5] is used to capture the essential features of

toroidicity and profiles generic to all toroidal microinstabilities:[
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φ̃(x,θ) = 0. (1)

Here εn = Ln/R and σ = εn/(qkθ ρs). We consider toroidal flow-shear Ω′
φ

as dominant and

Doppler-shift the (real part of) complex mode frequency Ω→Ω+nΩ′
φ

x. The perturbed poten-

tial is Fourier decomposed into poloidal harmonics φ̃ = ∑m φm(x)exp(−imθ) and subsequently

solved as an initial-value problem through a transform Ω→−i∂/∂ t. The details of the model,

its numerical implementation, equilibrium parameters and benchmarks are described in ref. [6].
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Fig. 2: (a) shows the evolution of the growth-rate
as the flow-shear is changed slowly and then (b)
suddenly. Coloured lines track individual Fourier
modes. (c)-(d) show the mode structure when the
growth-rate is maximum. For ω∗e = 106 Hz, 1000
units on time axis ∼ 1 ms.

We start with an eigenmode sitting at the bottom

of the poloidal cross-section for a negative flow

shearing-rate γE = Ω′
φ
/q′ (Fig. 1(c)) and ramp it

through the critical value needed to access the IM

(in this case γE,IM = 0; Fig. 2(c)). As the shear is

increased further, the mode rotates to the top and,

after performing several rapid poloidal precessions

for γE > γE,GM (Fig. 3), settles down as a GM. We

know the instability retains its eigenmode identity

since all individual Fourier harmonics grow at the

same rate (Fig. 2(a)). We next perform the scan in

the limit dγE/dt→ ∞, to which several interesting

features emerge: (1) the instability loses its eigen-

mode identity (as evident from the different growth-rates associated with the poloidal harmonics

in Fig. 2(b)) but retains the coherent ‘finger-like’ structure as it gets convected poloidally; (2)

the maximum growth-rate closely approaches γIM; and (3) this maximum occurs after the mode

has rotated past the outboard-midplane.

This mechanism provides a new model for small-ELMs [6]. In an EPED-type model [7], we

speculate that small-ELMs occur when the expanding pedestal, clamped at the marginal gradient

of the GM-branch of the kinetic ballooning mode (KBM-GM), transitions to the KBM-IM as the

flow-shear passes through a critical value. At this point the strongly unstable IM would drive a

burst in transport, resetting the profiles and allowing the GM to re-establish. If this critical flow-
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shear is not accessible, the evolving pedestal would hit the peeling-ballooning boundary and

result in a Type-I ELM. For ω∗e = 106 Hz, the GM-IM-GM transition is seen to occur on the

O(ms) time-scale characteristic of small-ELMs. The model provides a robust experimentally

testable prediction: density/potential/magnetic fluctuations, measured inside the pedestal over

a wide poloidal angle, and temporally resolved between successive small-ELM bursts, would

indicate fluctuations that shift poloidally at the time of ELM onset.
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Fig. 3: Dashed vertical lines in (a) correspond to
the potential plots (b)-(d), evolving chronologically
in the anti-clockwise direction.

Another interesting feature is the presence of

Floquet Modes (FM) [8] as the GM tries to es-

tablish. For any |γE | > γE,GM, instead of staying

poloidally confined at the top/bottom in accor-

dance with the eigenmode formalism, the mode

rotates to the inboard side, makes a rapid transi-

tion to the outboard side and then slowly tracks its

way to the top/bottom, spending more time at its

eigenmode location with each precession, before

eventually settling down as a GM (Fig. 3). The as-

sociated periodic burst in growth-rate as the mode

samples the outboard side could further influence the small-ELM dynamics.

An important piece of physics to consider is the effect the mode structure would have on the

flow through, for example, Reynolds stresses [9]. This can be incorporated into our numerical

model through a flow-diffusion equation

∂ 〈Ωφ 〉
∂ t
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∂

∂x

〈
∂ φ̃

∂x
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〉
= µ̂

∂ 〈Ωφ 〉
∂ 2x

. (2)

Here 〈. . .〉 indicates a poloidal average, µ̂ is the viscosity and λ̂ is related to the saturated mode

amplitude. Since our model for φ̃ (eqn. 1) is linear, λ̂ is indeterminate and is taken to be such that

the self-generated flow is comparable to the imposed/external flow. The steady-state solution to

eqn. 2 is only dependent on the ratio λ̂/µ̂ , so the absolute value of µ̂ in these simulations is not

important and has been chosen for faster numerical convergence.

Perturbed IM initialisation When the simulation is initiated with a linear flow profile and

a consistent mode structure, slightly perturbed from the IM, the self-generated flow associated

with the mode creates a stationary point, driving the system back towards the IM. The overall

flow-profile is pushed downwards (not noticeable in these plots) as the flow locally peaks.

Floquet Mode initialisation The simulation is then initiated with an external flow-profile
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Fig. 4: (Left of dotted line) Frames above and below show the initial and converged Ωφ and φ̃ for the perturbed IM
and GM. (Right of dotted line) The evolution of the growth-rate for an initial GM/FM and IM with the Reynolds
torque switched on at the times indicated. For these simulations µ̂ = 5.0×10−2 and λ̂ = 1.0×10−4.

such that the mode sets off performing Floquet cycles. When the intrinsic flow is switched

on, depending on λ̂ , the peak in the flow-profile traps the mode and prevents further Floquet

precessions.

The existence of IM and GM as stationary solutions would depend on the balance of the self-

generated and external (e.g. equilibrium, NBI driven) torques. This can only be quantified by

moving to a nonlinear model. Each global mode sitting on a resonant surface would set bound-

aries on the neighbouring modes; integrating across the minor radius with global boundary

conditions (e.g. core NBI and SOL flows) would give the plasma rotation profile. Future work

will explore the correlation between the flow associated with these linear mode structures and

the saturated flows. This could potentially provide a handle on intrinsic torque profile control

using shaping (for example) to modify the global mode structure.
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