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Introduction While the geodesic acoustic continuum mode (GAM) in tokamaks is often
treated as an electrostatic phenomenon [1], recent experiments [2, 3] and theory [4, 5] have
shown that a magnetic component with (dominant) poloidal mode number m = 2 is also
associated with the mode. This feature of GAMs can be understood by using an ideal MHD
description of the plasma, where the magnetic component (Q) of the GAM is calculated from
Q = VXx(&xB), and & is a plasma displacement perturbation with mode number m = 2, also
associated with the GAM [4, 5]. This global m = 2 component of § exists within the whole
plasma region and is driven by a combination of the effects of a finite pressure at the GAM
surface and toroidal geometry. Similarly to the m = 2 component of & the magnetic
perturbation also exists within the whole plasma, and even in the vacuum region, where it
recently has been detected in experiments [2, 3]. The m = 2 component of & generates, in
addition, fluctuations in the plasma density, also existing within the whole plasma, and in
particular in regions of strong density gradients, e.g. near the plasma edge where dp/dr
often is large. Here we give a brief account of these properties of GAMs, including a
discussion of the perturbed magnetic field in the vacuum region, and refer to [5] for a
detailed analysis.

Main structure of the GAM field The analysis in [5] is based on a straight field line coordi-
nate system (7, 8, ¢) in which § and Q are represented by their contravariant components, i.e.
§=¢"e, + 8%y + 8%, and Q = Q"e, + Q%4 + Q¥e,,. For a tokamak with large aspect
ratio, & and Q¥, including the leading-order m = 2 components, are given by the expansions

& = e280@ sin 20 + - 1
§0 =0 4 £67M cos 0 + £26) cos 26 + --- (Ib)
¢ = efip(l) cos @ + 8265”(2) + SZE;”(Z) cos 260 + - (1c)
Q% = €4Qf(4) sin0 + eSQ;”(S) sin 26 + -+ (1d)
The other two components of Q are given by the expansions Q" = g3Q;(3) cos 26 + --- and

Qf = £3Q29(3) sin 26 + ---, and the amplitudes 5(3) and Q;(g) can, from Q = VX(§xB), be

expressed directly in terms of fzr(z) in (la) as 3(3) = —(BO/rRO)(ryfzr(z)) and Q;(3) =

(2uBy/ Ro)fzr (2), where u = 1/q, B, is the toroidal magnetic field and R, the major radius of

the plasma. For a perturbation (£, Q) ~ e~'“t, a solution of the MHD equation of motion
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yields, to leading order, the GAM components & 00 = =aés(r —ny), ¢, o) = = u%(r/Ry)é&, 9(0),

‘p(l) = ,u(r/Ro)fe(O) and Q‘p(‘l') —(Tp/ByR3)(2 + uz)fe(o) where 1y is a radius where

2 = wi, y = 022 + u?), and £ is an arbitrary amplitude constant [4, 5]. Furthermore,

= /Tp/p/R, is the sound frequency, p the plasma pressure, p the density and I the adia-

w

batic index. The GAM components to next order in & can be derived from g‘r(z) in (la),
which is obtained by solving the differential equation and boundary condition [5]

a2 395" r2) , r°R8 a (Qf™ _
dr ('u r dar 3‘“ T'EZ o8, 2By dr r =0 (2a)
agl® 1431 .1 (2)
o L™ (g) (2b)
r=a

respectively, where a is the plasma radius, b (> a) the radius of a surrounding, conducting
wall, and A = (a/b)* < 1. The boundary condition (2b) is obtained by matching the internal
GAM field to the perturbed magnetic field in the vacuum region. Of the rest of the m = 2

components in (1b, ¢, d), &; 2(2) exists only at the GAM surface while Eze @ and Q;p ®) in addi-
6(2) _1 () )
2(ag® /ar + @ /r).

tion have parts that exist outside r = r,. For instance, ¢,
T#7g

Magnetic components in the vacuum region By continuity of the structure of the r- and 6-
components of Q across the plasma-vacuum interface, these components of the perturbed
vacuum magnetic field have the form 8B, (r) cos 260 and §By(r) sin 26. It is easy to show
that 6B, g both satisfy the equation 72 (SBT,Q)” + 3r(5Br,9)’ — 36B, g = 0 to leading order.
The solution to this equation that fulfills §B, = 0 at the conducting wall r = b is given by

6,0 = O () £ 2 ()] ®)

where the minus sign is valid for 6B, and the plus sign for §Bg. From continuity of the radial

component of Q it follows that §B.(a) = (2By/qaR0)¢, r(z)(a), and based on the properties
of the solution to (2a, b), 6B, g(a)/B, can be expressed in the form &,8* (1) f; (ro)g+<f
where B*(ry) = w?/wj3 is the beta value at the GAM surface, fq (7o) a factor that depends on
the g-profile and strongly on the GAM radius 7, and g, are factors that depend mainly on
the wall distance and rather weakly on the g-profile (6B, < g_ and 6By « g,) [5].

In Fig. 1a, §B,.(r)/8B,(a) (solid curves) and 6By (r)/8B, (a) (dotted curves) given by
(3) are shown for b/a = 1.25, 1.5, and 2. It is seen that 6By is significantly larger than 6B,
in the vacuum region if there is a conducting wall close to the plasma, while the two compo-
nents are of comparable magnitude if the wall is far from the plasma. In Fig. 1b, an example
of a solution ¢, (2)(r) to (2a, b) is shown together with the associated magnetic components
inside and outside a plasma with g-profile q(r) = 1+ 3(r/a)* and wall distance b/a =
1.25. Furthermore, 8*(1y) = 1, § = 1 and the GAM radius is 1, = 0.7a.
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Fig. la) Normalized magnitudes of the magnetic components §B,.(r) cos 260 and 6Bg(r) sin 20in the vacuum
region between the plasma surface and a conducting wall, for different wall distances b/a.
Fig. 1b) Plasma perturbation and magnetic components both inside and outside the plasma (ry = Tgan)-

In Fig. 2a, the combination of the factors f*(7p) and f;(7,) is shown for the two pressure
profiles B*(r) = B*(0)[1 — (r/a)?]” with v =1 and 2, $*(0) = 1, and for the g-profiles
q(r) =1+ 5@ /a)® with a = 2,4, 6. It is seen that 6B,,,./B, is maximized for GAMs loca-
lized relatively close to the plasma edge, with optimal values occurring for ry/a ~ 0.7 — 0.9,
depending a little on the pressure and g-profiles. Fig. 2b illustrates g4 (b/a) for the same g-
profiles as in Fig. 2a. For b/a near unity, § By is seen to be much larger than 6B, (g, > g-).
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Fig. 2a) Product of B*(r,) and f,(r,) determining 5By g(a) . The pressure profile is f*(0)[1 — (r/a)?]" with
B*(0) =1, v = 1and 2, and the q-profiles are given by q(r) = 1 + (q, — D) (r/a)* with a = 2,4, 6 and

qq = 6. Fig. 2b) Magnitude of the factors g4 (b/a) determining the effect of the conducting wall on 6B, g(a).
(8B, « g_ and 6Bg < g,). The q-profiles are the same as in (a).

Global m = 2 components In addition to the global structure of the m = 2 components of
&9 and 6B, g, the GAM field also includes global pressure and density perturbations [5].

The global density perturbation, for instance, is given by 8pl,.,, = =&, @) (dp/dr) sin 26

and is generated by a finite fzr @) A realistic estimate of these fluctuations requires that fzr @)

is solved with a free plasma boundary together with the boundary condition (2b). Examples
of the type of global m = 2 fluctuations in £% and p that the solutions to (2a, b) generate are
shown in Fig. 3.
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Fig. 3a) Amplitude of global m = 2 oscillations of the poloidal flow associated with GAMs localized at
ro/a = 0.8,0.85,0.9 and 0.95. Fig 3b) Perturbed density 5p outside the GAM surface produced by
GAMs localized at ry/a = 0.6,0.7,0.8 and 0.9 in the density profile shown. & = 1, B*(r,) = 1 and the
q-profile is q(r) = 1+ 3(r/a)* in both figures. The wall distance is b/a = 1.25 in (a) and 1.15 in (b).

Typically, these fluctuations tend to be strongest on the outside of the GAM surface r = 1y,
and especially in the edge region of the plasma, as seen in Fig. 3a. Furthermore, as shown in
Fig. 3b, the fluctuations in p are particularly strong in regions where the density gradient is
large, somewhat similar to the measured GAM intensities e.g. in [6].

Conclusions A detailed MHD analysis [5] of axisymmetric (m = n = 0) modes in tokamaks
with large aspect ratio and circular cross section leads to results consistent with the experi-
mentally observed main structure of the perturbed vacuum magnetic field associated with
GAMs [2, 3]. Furthermore, although these GAM solutions belong to the MHD continuum,
the associated m = 2 perturbations at the same frequency in magnetic field, plasma flow,
plasma density and plasma pressure nevertheless have such an extension across the plasma
and vacuum regions (see e.g. Figs. 1b and 3a, b) that they are in essence "global modes”. It is
therefore not unlikely that the GAM eigenmode structures diagnosed in several recent experi-
ments (e.g. [2] and [7]) could be the result of the radially extended m = 2 components (plus
additional harmonics in plasmas with a non-circular cross section [5]) of the perturbed den-
sity and poloidal flow of a single continuum mode localized near the plasma edge.
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