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Introduction While the geodesic acoustic continuum mode (GAM) in tokamaks is often 
treated as an electrostatic phenomenon [1], recent experiments [2, 3] and theory [4, 5] have 
shown that a magnetic component with (dominant) poloidal mode number 𝑚 = 2 is also 
associated with the mode. This feature of GAMs can be understood by using an ideal MHD 
description of the plasma, where the magnetic component (𝐐) of the GAM is calculated from 
𝐐 = ∇× 𝛏×𝐁 , and 𝛏 is a plasma displacement perturbation with mode number 𝑚 = 2, also 
associated with the GAM [4, 5]. This global 𝑚 = 2 component of 𝛏 exists within the whole 
plasma region and is driven by a combination of the effects of a finite pressure at the GAM 
surface and toroidal geometry. Similarly to the 𝑚 = 2 component of 𝛏, the magnetic 
perturbation also exists within the whole plasma, and even in the vacuum region, where it 
recently has been detected in experiments [2, 3]. The 𝑚 = 2 component of 𝛏 generates, in 
addition, fluctuations in the plasma density, also existing within the whole plasma, and in 
particular in regions of strong density gradients, e.g. near the plasma edge where 𝑑𝜌 𝑑𝑟 
often is large. Here we give a brief account of these properties of GAMs, including a 
discussion of the perturbed magnetic field in the vacuum region, and refer to [5] for a 
detailed analysis. 
 
Main structure of the GAM field The analysis in [5] is based on a straight field line coordi-
nate system (𝑟,𝜃,𝜑) in which 𝛏 and 𝐐 are represented by their contravariant components, i.e. 
𝛏 = 𝜉!𝐞! + 𝜉!𝐞! + 𝜉!𝐞! and 𝐐 = 𝑄!𝐞! + 𝑄!𝐞! + 𝑄!𝐞!. For a tokamak with large  aspect 
ratio, 𝛏 and 𝑄!, including the leading-order 𝑚 = 2 components, are given by the expansions 
 
𝜉! = 𝜀!𝜉!

!(!) sin 2𝜃 +⋯   (1a) 
𝜉! = 𝜉!

!(!) + 𝜀𝜉!
!(!) cos𝜃 + 𝜀!𝜉!

!(!) cos 2𝜃 +⋯   (1b) 
𝜉! = 𝜀𝜉!

!(!) cos𝜃 + 𝜀!𝜉!
!(!) + 𝜀!𝜉!

!(!) cos 2𝜃 +⋯      (1c) 
𝑄! = 𝜀!𝑄!

!(!) sin𝜃 + 𝜀!𝑄!
!(!) sin 2𝜃 +⋯  (1d) 

 
The other two components of 𝐐 are given by the expansions 𝑄! = 𝜀!𝑄!

!(!) cos 2𝜃 +⋯   and  
𝑄! = 𝜀!𝑄!

!(!) sin 2𝜃 +⋯, and the amplitudes 𝑄!
!(!) and 𝑄!

!(!) can, from 𝐐 = ∇× 𝛏×𝐁 , be 

expressed directly in terms of 𝜉!
!(!) in (1a) as 𝑄!

!(!) = − 𝐵! 𝑟𝑅! 𝑟𝜇𝜉!
! ! !

 and 𝑄!
!(!) =

2𝜇𝐵! 𝑅! 𝜉!
!(!), where 𝜇 ≡ 1/𝑞, 𝐵! is the toroidal magnetic field and 𝑅! the major radius of 

the plasma. For a perturbation (𝛏, 𝐐) ~ 𝑒!!"#, a solution of the MHD equation of motion 
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yields, to leading order, the GAM components 𝜉!
!(!) = 𝑎𝜉𝛿 𝑟 − 𝑟! , 𝜉!

!(!) = 𝜇!(𝑟 𝑅!)𝜉!
! ! , 

𝜉!
!(!) = 𝜇(𝑟 𝑅!)𝜉!

! !  and 𝑄!
!(!) = − 𝑟Γ𝑝 𝐵!𝑅!! 2+ 𝜇! 𝜉!

! ! , where 𝑟! is a radius where 
𝜔! = 𝜔!"#! = 𝜔!! 2+ 𝜇! , and 𝜉 is an arbitrary amplitude constant [4, 5]. Furthermore, 
𝜔! = Γ𝑝 𝜌 𝑅! is the sound frequency, 𝑝 the plasma pressure, 𝜌 the density and Γ the adia-

batic index. The GAM components to next order in 𝜀 can be derived from 𝜉!
!(!) in (1a), 

which is obtained by solving the differential equation and boundary condition [5] 
 
!
!"

𝜇!𝑟! !!!
!(!)

!"
− 3𝜇!𝑟𝜉!

! ! + !!!!!

!!!

!
!"

!!
! !

!
= 0      (2a) 

 

𝑎 !!!
! !

!" !!!
= − !!!!

!!!
𝜉!
! ! (𝑎)  (2b) 

 
respectively, where 𝑎 is the plasma radius, 𝑏 (> 𝑎) the radius of a surrounding, conducting 
wall, and 𝜆 = 𝑎 𝑏 ! < 1. The boundary condition (2b) is obtained by matching the internal 
GAM field to the perturbed magnetic field in the vacuum region. Of the rest of the 𝑚 = 2 
components in (1b, c, d), 𝜉!

!(!) exists only at the GAM surface while 𝜉!
!(!) and 𝑄!

!(!) in addi-

tion have parts that exist outside 𝑟 = 𝑟!. For instance, 𝜉!
! !

!!!!
= !

!
𝑑𝜉!

!(!) 𝑑𝑟 + 𝜉!
!(!) 𝑟 . 

 
Magnetic components in the vacuum region By continuity of the structure of the 𝑟- and 𝜃-
components of 𝐐 across the plasma-vacuum interface, these components of the perturbed 
vacuum magnetic field have the form 𝛿𝐵!(𝑟) cos 2𝜃 and 𝛿𝐵!(𝑟) sin 2𝜃. It is easy to show 
that 𝛿𝐵!,! both satisfy the equation 𝑟! 𝛿𝐵!,!

!! + 3𝑟 𝛿𝐵!,!
! − 3𝛿𝐵!,! = 0 to leading order. 

The solution to this equation that fulfills 𝛿𝐵! = 0 at the conducting wall 𝑟 = 𝑏 is given by 
 

𝛿𝐵!,!(𝑟) =
!!"!(!)

!
!

!!!
!
!

!
± !

!!!
!
!

!
  (3) 

 
where the minus sign is valid for 𝛿𝐵! and the plus sign for 𝛿𝐵!. From continuity of the radial 
component of 𝐐 it follows that 𝛿𝐵!(𝑎) = 2𝐵! 𝑞!𝑅! 𝜉!

! ! (𝑎), and based on the properties 
of the solution to (2a, b), 𝛿𝐵!,!(𝑎) 𝐵! can be expressed in the form 𝜀!𝛽∗(𝑟!)𝑓!(𝑟!)𝑔±𝜉 
where 𝛽∗ 𝑟! = 𝜔!! 𝜔!! is the beta value at the GAM surface, 𝑓!(𝑟!) a factor that depends on 
the 𝑞-profile and strongly on the GAM radius 𝑟!, and 𝑔± are factors that depend mainly on 
the wall distance and rather weakly on the 𝑞-profile (𝛿𝐵! ∝ 𝑔! and 𝛿𝐵! ∝ 𝑔!) [5]. 
 In Fig. 1a, 𝛿𝐵!(𝑟) 𝛿𝐵!(𝑎) (solid curves) and 𝛿𝐵!(𝑟) 𝛿𝐵!(𝑎) (dotted curves) given by 
(3) are shown for 𝑏 𝑎 = 1.25, 1.5, and 2. It is seen that 𝛿𝐵! is significantly larger than 𝛿𝐵! 
in the vacuum region if there is a conducting wall close to the plasma, while the two compo-
nents are of comparable magnitude if the wall is far from the plasma. In Fig. 1b, an example 
of a solution 𝜉!

! ! (𝑟) to (2a, b) is shown together with the associated magnetic components 
inside and outside a plasma with 𝑞-profile 𝑞(𝑟) = 1+ 3 𝑟 𝑎 ! and wall distance 𝑏/𝑎 =
1.25. Furthermore, 𝛽∗ 𝑟! = 1, 𝜉 = 1 and the GAM radius is 𝑟! = 0.7𝑎. 
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              a)                                                                       b) 
 
 
 
 
 
In Fig. 2a, the combination of the factors 𝛽∗(𝑟!) and 𝑓!(𝑟!) is shown for the two pressure 
profiles 𝛽∗ 𝑟 = 𝛽∗(0) 1− 𝑟 𝑎 ! ! with 𝜈 = 1 and 2, 𝛽∗ 0 = 1, and for the 𝑞-profiles 
𝑞 𝑟 = 1+ 5 𝑟 𝑎 ! with 𝛼 = 2, 4, 6. It is seen that 𝛿𝐵!"# 𝐵! is maximized for GAMs loca-
lized relatively close to the plasma edge, with optimal values occurring for 𝑟! 𝑎~  0.7− 0.9, 
depending a little on the pressure and 𝑞-profiles. Fig. 2b illustrates 𝑔±(𝑏 𝑎) for the same 𝑞-
profiles as in Fig. 2a. For 𝑏/𝑎 near unity, 𝛿𝐵! is seen to be much larger than 𝛿𝐵! (𝑔! ≫ 𝑔!). 
 
 
 
 
 
 
 
 
 
               a)                                                                          b)  
 
 
 
 
 
 
Global 𝒎 = 𝟐 components In addition to the global structure of the 𝑚 = 2 components of 
𝜉!,! and 𝛿𝐵!,!, the GAM field also includes global pressure and density perturbations [5]. 

The global density perturbation, for instance, is given by 𝛿𝜌 !!!! = −𝜉!
! ! 𝑑𝜌 𝑑𝑟 sin 2𝜃 

and is generated by a finite 𝜉!
! ! . A realistic estimate of these fluctuations requires that 𝜉!

! !  
is solved with a free plasma boundary together with the boundary condition (2b). Examples 
of the type of global  𝑚 = 2 fluctuations in 𝜉! and 𝜌 that the solutions to (2a, b) generate are 
shown in Fig. 3. 
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Fig. 1a) Normalized magnitudes of the magnetic components 𝛿𝐵!(𝑟) cos 2𝜃 and 𝛿𝐵!(𝑟) sin 2𝜃in the vacuum 
region between the plasma surface and a conducting wall, for different wall distances b/a. 
Fig. 1b) Plasma perturbation and magnetic components both inside and outside the plasma (𝑟! = 𝑟!"#). 
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Fig. 2a) Product of 𝛽∗(𝑟!) and 𝑓!(𝑟!) determining 𝛿𝐵!,!(𝑎) . The pressure profile is 𝛽∗(0)[1 − (𝑟/𝑎)!]! with 
𝛽∗(0) = 1, 𝜈 = 1 and 2, and the 𝑞-profiles are given by 𝑞(𝑟) = 1 + (𝑞! − 1)(𝑟/𝑎)! with 𝛼 = 2,4, 6 and 
𝑞! = 6. Fig. 2b) Magnitude of the factors 𝑔±(𝑏 𝑎⁄ ) determining the effect of the conducting wall on 𝛿𝐵!,!(𝑎). 
(𝛿𝐵! ∝ 𝑔! and 𝛿𝐵! ∝ 𝑔!). The 𝑞-profiles are the same as in (a). 
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             a)                                                                         b)  
 
 
 
 
 
 
Typically, these fluctuations tend to be strongest on the outside of the GAM surface 𝑟 = 𝑟!, 
and especially in the edge region of the plasma, as seen in Fig. 3a. Furthermore, as shown in 
Fig. 3b, the fluctuations in 𝜌 are particularly strong in regions where the density gradient is 
large, somewhat similar to the measured GAM intensities e.g. in [6]. 
 
Conclusions A detailed MHD analysis [5] of axisymmetric (𝑚 = 𝑛 = 0) modes in tokamaks 
with large aspect ratio and circular cross section leads to results consistent with the experi-
mentally observed main structure of the perturbed vacuum magnetic field associated with 
GAMs [2, 3]. Furthermore, although these GAM solutions belong to the MHD continuum, 
the associated 𝑚 = 2 perturbations at the same frequency in magnetic field, plasma flow, 
plasma density and plasma pressure nevertheless have such an extension across the plasma 
and vacuum regions (see e.g. Figs. 1b and 3a, b) that they are in essence "global modes”. It is 
therefore not unlikely that the GAM eigenmode structures diagnosed in several recent experi-
ments (e.g. [2] and [7]) could be the result of the radially extended 𝑚 = 2 components (plus 
additional harmonics in plasmas with a non-circular cross section [5]) of the perturbed den-
sity and poloidal flow of a single continuum mode localized near the plasma edge.  
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Fig. 3a) Amplitude of global 𝑚 = 2 oscillations of the poloidal flow associated with GAMs localized at 
𝑟! 𝑎⁄ = 0.8, 0.85, 0.9 and 0.95. Fig 3b) Perturbed density 𝛿𝜌 outside the GAM surface produced by 
GAMs localized at 𝑟! 𝑎⁄ = 0.6,0.7,0.8 and 0.9 in the density profile shown. 𝜉! = 1, 𝛽∗(𝑟!) = 1 and the 
𝑞-profile is 𝑞(𝑟) = 1 + 3(𝑟/𝑎)! in both figures. The wall distance is 𝑏/𝑎 = 1.25 in (a) and 1.15 in (b). 
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