
Kinetic analysis of the interaction between particles and magnetic islands

S. Nasr1, D. Zarzoso1, A. I. Smolyakov2
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The equilibrium configuration in a tokamak consists of axi-symmetric nested toroidal flux

surfaces, called magnetic surfaces. This favorable configuration, however, can be perturbed

by a radial magnetic perturbation that arises on a rational magnetic surface of safety factor

q=m/n where integers m and n are, respectively, the poloidal and toroidal mode numbers of the

perturbation. On these flux surfaces the parallel current can exhibit a current singularity layer.

The natural response of the system is to regularize the singularity by non-ideal effects [1]. This

leads to the breaking and reconnecting of the magnetic field-lines, resulting in the modification

of the topology of the field by the destruction of resonant surfaces and the formation of magnetic

islands [2]. This electromagnetic instability is called the tearing instability. In tokamak plasma,

the presence of magnetic islands can have a severe impact on the confinement. The parallel

streaming of particles following the perturbed field lines across the island results in enhanced

cross-field transport leading to the flattening of the radial profiles. This can significantly reduce

core confinement and eventually lead to a disruption [3]. Hence the importance of the control

of this resistive instability. Furthermore, in a tokamak, a large fraction of plasma particles can

have large gyro-orbits and banana orbits due to their large kinetic energy. These high energy

populations arise from various heating mechanisms like ion cyclotron radio frequency heating

(ICRF). The ensuing non-Maxwellian distribution function can strongly affect the equilibrium,

stability, and transport in the plasma.

Classical tearing modes are known to be driven by parallel current density gradient and their

stability is characterized by the parameter ∆′ [4]. In the absence of fast particles and neglecting

ion contribution, the growth rate of the mode scales linearly with ∆′ [5]. It was shown in ref. [6]

that the effects of energetic ions on tearing modes mainly come from the ideal region of the
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instability due to the large drift orbit width of energetic ions. Furthermore, C. Hegna showed

in [8] that a population of energetic ions can suppress the nonlinear island growth when its

density profile peeks just outside of the rational surface. Energetic particles can provide an

additional source or sink of free energy affecting the tearing modes by changing the value of

∆′ which is determined by equilibrium quantities. In the presence of energetic particles the

background distribution function is no longer a Maxwellian. It was shown in ref. [7] that in

this case, the energetic particles can affect the perturbed parallel current response due to their

resulting magnetic drift.

In the present work we investigate the stabilization mechanisms of magnetic islands by

studying their interaction with particles, both thermal and energetic. The gyrokinetic theory is

used for this purpose as it is a theoretical framework that allows the analysis of the impact of

wave-particle resonances on plasma instabilities. The mode frequency is analytically calculated

in two cases, first in the presence of an energetic electron population taking into account the

Landau resonance only and second in the absence of fast particles taking into account both the

Landau and curvature drift resonances. The considered geometry is slab and the equilibrium

magnetic field is of the form B0 = B0(ez + eyx/Ls) , where ey and ez are unit vectors and Ls

is the magnetic shear length. Closely following refs. [9, 10] the linear growth rate of a tearing

mode is calculated starting from the linearized gyrokinetic collisionless Vlasov equation for

each species, [
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coupled to parallel Ampère’s law,
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where ω is the frequency of the mode, f j and Fj are the perturbed and equilibrium distribu-

tion functions, Ẽ and B̃ are the perturbed fields represented as a typical perturbation of the

form Q(x, t) = Q̃(x)exp(−iωt). The dispersion relation for the parallel vector potential is then

obtained.

In the following, the first case (energetic electrons, Landau resonance) is presented. The

equilibrium distribution function can be written as F = FM +FEP, where the energetic particles

distribution is a shifted Maxwellian. The dispersion relation for the mode is derived taking into

account only the resonance in parallel velocity. For simplicity the energetic particles population

is taken to be of the electrons species. The frequency of the mode is found to have a real (ω) and

2

43rd EPS Conference on Plasma Physics P2.055



an imaginary part (γ). In figure 1 ω (left) and γ (right) are compared to the growth rate γ0 found

Figure 1: Real (left) and imaginary (right) parts of the mode frequency in terms of the velocity and

the density of the beam of fast ions compared to the growth rate γ0 (solid black line) in the absence of

energetic particles.

in the absence of energetic particles. They are plotted as a function of nbeam/nbulk (nbeam is the

density of the energetic particle population and nbulk is the plasma bulk density) and v0/vth (v0

is the velocity of the beam and vth is the thermal velocity). The result shows the appearance

of a real component of the mode frequency (contrary to the case without energetic particles in

which ω = 0) for significant beam velocity and beam density. The mode exhibits a growth at

significant values of the beam velocity but is seen to be stabilized by an increase in the density

of energetic particles.

We are also interested in analyzing the effects of the drift motion of thermal particles on

the tearing stability. We calculate the growth rate of the mode taking into account the electron

∇B drift resonance together with the Landau resonance. We are considering short wavelength

variations across the magnetic field and long wavelength variations parallel to B0, so we make

the approximation ρi∇⊥ ∼ 1. The perturbations with such rapid spatial variations perpendicular

to the magnetic field can be represented in the form of an eikonal function S(x,y,z) [11] such that

Q̃(x) = Q̂(x)exp(iS), where Q̂(x) is the amplitude and S satisfies b ·∇S = 0. For large parallel

currents in the singular layer, the electrostatic field is shown to be small, so we will neglect its

contributions [5]. The constraint boundary condition leading to the dispersion relation takes the

form

∆
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in which the Landau and the curvature drift resonances are apparent, ωp is the plasma fre-

quency, J0 is the Bessel function of first kind, α j = ∇S/Ω j and ωD j = vDj ·∇S where vDj =
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b×µ∇B0/(m jΩ j). Integrating over v‖ we get

∆
′ =

∫
dx

[
4ω2

pe

c2 ζ
2
e

∫
R+

Λ
[
1+Ω

′
eZ
(
Ω
′
e
)]

v⊥e−v2
⊥J2

0(αev⊥) dv⊥

]
(4)

where Ω′e = ζeΛ = ζe(1− ωBe
ω

v2
⊥) and ζe = ωLs/kyvex and ωBe = −v2

e/2ΩeaLs. Z(Ω′e) is the

plasma dispersion function. Integrating eq. (4) first over the radial coordinate x and then over

v⊥ taking the Bessel function to the first order in αev⊥, we find the growth rate

γ =
c2

ω2
pe

kyve√
πLs

∆
′ (5)

where ky is the wave number in the binormal direction and ve is the electron thermal velocity.

The growth rate is found to have the same scaling with ∆′ as in the case where only the k‖v‖

resonance is considered but with double the coefficient. Consequently, using this approach

we conclude that the drift resonance has the effect of doubling the growth rate of the tearing

mode. However, one should be careful about the generality of the result since it is only valid for

αev⊥< 1, because of the approximation made on the argument of the Bessel function J0(αev⊥),

and for ωBev2
⊥/ωx < 1 because they are arguments of the plasma dispersion function that must

tend to zero at the boundary limit of the integral.
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