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Kinetic analysis of the interaction between particles and magnetic islands
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The equilibrium configuration in a tokamak consists of axi-symmetric nested toroidal flux
surfaces, called magnetic surfaces. This favorable configuration, however, can be perturbed
by a radial magnetic perturbation that arises on a rational magnetic surface of safety factor
g = m/n where integers m and n are, respectively, the poloidal and toroidal mode numbers of the
perturbation. On these flux surfaces the parallel current can exhibit a current singularity layer.
The natural response of the system is to regularize the singularity by non-ideal effects [1]. This
leads to the breaking and reconnecting of the magnetic field-lines, resulting in the modification
of the topology of the field by the destruction of resonant surfaces and the formation of magnetic
islands [2]. This electromagnetic instability is called the tearing instability. In tokamak plasma,
the presence of magnetic islands can have a severe impact on the confinement. The parallel
streaming of particles following the perturbed field lines across the island results in enhanced
cross-field transport leading to the flattening of the radial profiles. This can significantly reduce
core confinement and eventually lead to a disruption [3]. Hence the importance of the control
of this resistive instability. Furthermore, in a tokamak, a large fraction of plasma particles can
have large gyro-orbits and banana orbits due to their large kinetic energy. These high energy
populations arise from various heating mechanisms like ion cyclotron radio frequency heating
(ICRF). The ensuing non-Maxwellian distribution function can strongly affect the equilibrium,
stability, and transport in the plasma.

Classical tearing modes are known to be driven by parallel current density gradient and their
stability is characterized by the parameter A’ [4]. In the absence of fast particles and neglecting
ion contribution, the growth rate of the mode scales linearly with A’ [5]. It was shown in ref. [6]

that the effects of energetic ions on tearing modes mainly come from the ideal region of the
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instability due to the large drift orbit width of energetic ions. Furthermore, C. Hegna showed
n [8] that a population of energetic ions can suppress the nonlinear island growth when its
density profile peeks just outside of the rational surface. Energetic particles can provide an
additional source or sink of free energy affecting the tearing modes by changing the value of
A" which is determined by equilibrium quantities. In the presence of energetic particles the
background distribution function is no longer a Maxwellian. It was shown in ref. [7] that in
this case, the energetic particles can affect the perturbed parallel current response due to their
resulting magnetic drift.

In the present work we investigate the stabilization mechanisms of magnetic islands by
studying their interaction with particles, both thermal and energetic. The gyrokinetic theory is
used for this purpose as it is a theoretical framework that allows the analysis of the impact of
wave-particle resonances on plasma instabilities. The mode frequency is analytically calculated
in two cases, first in the presence of an energetic electron population taking into account the
Landau resonance only and second in the absence of fast particles taking into account both the
Landau and curvature drift resonances. The considered geometry is slab and the equilibrium
magnetic field is of the form By = By(e, + eyx/L) , where ey and e, are unit vectors and L
is the magnetic shear length. Closely following refs. [9, 10] the linear growth rate of a tearing
mode is calculated starting from the linearized gyrokinetic collisionless Vlasov equation for

each species,
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where @ is the frequency of the mode, f; and F; are the perturbed and equilibrium distribu-
tion functions, E and B are the perturbed fields represented as a typical perturbation of the
form Q(x,t) = Q(x) exp(—icwt). The dispersion relation for the parallel vector potential is then
obtained.

In the following, the first case (energetic electrons, Landau resonance) is presented. The
equilibrium distribution function can be written as F' = Fy; + Fgp, where the energetic particles
distribution is a shifted Maxwellian. The dispersion relation for the mode is derived taking into
account only the resonance in parallel velocity. For simplicity the energetic particles population

is taken to be of the electrons species. The frequency of the mode is found to have a real (@) and
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an imaginary part (). In figure 1 o (left) and 7y (right) are compared to the growth rate 7y found
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Figure 1: Real (left) and imaginary (right) parts of the mode frequency in terms of the velocity and
the density of the beam of fast ions compared to the growth rate Yy (solid black line) in the absence of

energetic particles.

in the absence of energetic particles. They are plotted as a function of npeam /Mpuir (Mpeam 1S the
density of the energetic particle population and n,;; is the plasma bulk density) and vo /vy, (vo
is the velocity of the beam and vy is the thermal velocity). The result shows the appearance
of a real component of the mode frequency (contrary to the case without energetic particles in
which @ = 0) for significant beam velocity and beam density. The mode exhibits a growth at
significant values of the beam velocity but is seen to be stabilized by an increase in the density
of energetic particles.

We are also interested in analyzing the effects of the drift motion of thermal particles on
the tearing stability. We calculate the growth rate of the mode taking into account the electron
VB drift resonance together with the Landau resonance. We are considering short wavelength
variations across the magnetic field and long wavelength variations parallel to By, so we make
the approximation p;V | ~ 1. The perturbations with such rapid spatial variations perpendicular
to the magnetic field can be represented in the form of an eikonal function S(x,y,z) [11] such that
Q(x) = Q(x) exp(iS), where Q(x) is the amplitude and S satisfies b- V.S = 0. For large parallel
currents in the singular layer, the electrostatic field is shown to be small, so we will neglect its
contributions [5]. The constraint boundary condition leading to the dispersion relation takes the

form
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in which the Landau and the curvature drift resonances are apparent, @, is the plasma fre-

quency, Jy is the Bessel function of first kind, o; = VS /Q j and @p; = vp;j- VS where vpj =
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b x uVBy/(m;Q;). Integrating over v we get

4>
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where Q, = (A = (. (1 — 23 ) and §, = 0Ly /kyvex and wp, = —v2/2Q.aL,. Z(SY) is the
plasma dispersion function. Integrating eq. (4) first over the radial coordinate x and then over
v, taking the Bessel function to the first order in ¢, v |, we find the growth rate
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where ky, is the wave number in the binormal direction and v, is the electron thermal velocity.

&)

The growth rate is found to have the same scaling with A’ as in the case where only the kv
resonance is considered but with double the coefficient. Consequently, using this approach
we conclude that the drift resonance has the effect of doubling the growth rate of the tearing
mode. However, one should be careful about the generality of the result since it is only valid for
o,v | < 1, because of the approximation made on the argument of the Bessel function Jy( v ),
and for coBevzl /mx < 1 because they are arguments of the plasma dispersion function that must

tend to zero at the boundary limit of the integral.
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