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Introduction. In this study we employ a linear model of Grad-Shafranov equilibria with incom-
pressible flows of arbitrary direction, in order to examine the influence of the current column
displacements on the equilibrium and stability properties of Tokamak configurations with nor-
mal and reversed magnetic shear. An interesting observation is that of magnetic phase transitions
resulting in states with coexistent diamagnetic and paramagnetic regions, in both normal and
reversed magnetic shear configurations, when the current column is shifted appropriately. These
transitions are due to the variation of the fraction of the force-free current density with respect
to the diamagnetic one, which is related to the helicity injection inside the torus. We observed
also that small displacements of the current column may result in equilibria possessing regions
with both normal and reversed magnetic shear. The shear within these regions can be enhanced
or reduced by adjusting the triangularity of the configuration.

In terms of the stability properties, the normal and reversed magnetic shear equilibria differ
upon the localization and the extent of the stable regions, stable in the sense that a sufficient
stability condition is satisfied therein. The results indicate that the reversed magnetic shear can
play a stabilizing role.

Equilibrium solutions. The computed equilibria are derived by analytical integration of the
generalized Grad-Shafranov (GGS) [1],[2] equation in cylindrical coordinates (r,¢,z) with z

the axis of symmetry,
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where u(r,z) = [/ [1 - MI,Z7 ()] V2 45 with 27y being the poloidal magnetic flux, M), the poloidal

Mach function, X = X (u) a free function related to poloidal electric current, p = p(u) the mass
density function, P; = P;(u) the static pressure and & = ®(u) the electrostatic potential. The
GGS equation written in terms of the normalized quantities can be recovered by (1) just by set-

ting tp = 1. A linear model which permits solutions with normal and reversed magnetic shear
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upon u. For example one should consider an immediate generalization of the Solovev lineariza-

relies on the inclusion of a quadratic term in the functional dependence of the free function
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tion as follows: 1f_j4‘,2, = xo+ 2xiu+xou?, Py=po+pu, p ((I)’)2 = g0+ 2gu. A similar
model for static plasmas was studied recently in [3]. One may derive homogeneous solutions of
eq. (1), employing the ansatz above, for both peaked and hollow current density profiles i.e. for

xp>0and xp, <0

r¥;laiy (str)el+biJi (sTr)e R 4cjYy (str)elf+dY  (sTr)e ], x>0
up(r,z) = rY; [ale (jr)e *+bjJi(jr)e* “4c;Y)(jr)e’ *+d;Y) (jr)e_siz} , x <0
Solovev solution, e.g. see [4], x=0

where st =1/ j24+x and s~ =/ j> —x and J;, ¥; denote the first ..,

order Bessel functions of first and second kinds respectively. The

complete solution is given by the superposition of a homogeneous

solution with some particular solution of the inhomogeneous equa-
tion, that is u = u;, +u,. One may find several particular solutions.

Below we give a couple of them:
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where G denotes the Meijer-G function and ¥;, % are arbitrary

constants. D-Shaped and diverted Tokamak equilibrium configura-
) ) . Figure 1: Equilibrium con-
tions can be constructed (Fig. 1) by exploiting the free parameters

) ) figurations with smooth (up)
(aj,bj,dj,cj) as described in the works [4]-[7]. The free param-
and diverted (down) bound-

eters (p1,x1,X2,€1) are fixed in accordance with the experimental ,
aries and ITER geometric

values of the various physical quantities and figures of merit, i.e. characteristics.
beta parameter 8 ~ 1%, safety factor ¢ > 1, P ~ 10° Pa, E ~ 10* V /m.

Equilibrium and magnetic transitions. We constructed equilibria with peaked and hollow
current density profiles. Both kinds of equilibria with normal and reversed magnetic shear were
observed. In this study the current column is shifted by imposing a condition for the position
of the toroidal current density extremum. For typical Tokamak mass flows, the flow contribu-
tion is small enough in order to neglect its contribution in the imposition of this condition:
o [x1/r+xou(r,z)/r+ pir] ‘(r=l+5r,z=5z) = aZ”(r’Z)‘(r:HB,,z:SZ) =0, where (1+ 8,,9;) is the

position of the current density extremum. Along with certain boundary-shaping conditions [4]
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Figure 2: (Left) The modulus of the poloidal diamagnetic current density versus the modulus of the
poloidal force-free current density for a mixed diamagnetic-paramagnetic equilibrium (the diamagnetic
plasma bulk is surrounded by a paramagnetic edge layer). (Center) The toroidal current density and
safety factor profiles for a normal magnetic shear equilibrium with paramagnetic core and diamagnetic
edge layer. (Right) The toroidal current compared to the safety factor for equilibria with hollow current
densities and different triangularities. The shear reversals occur when the current density extremum is
shifted slightly to the high-field side. The green, blue and magenta lines correspond to equilibria with
triangularities 6 = 0.1, § = 0.3, 6 = 0.5 respectively.

we derive equilibria with the desired shapes and the desired current density extremum position.
It is interesting to note that for even very small values of &, the equilibria loose the desirable
nested magnetic topology. This indicates that the vertical current displacements act in an un-
favorable way as concerns the nestedness of magnetic surfaces. Varying the position &, we
observed magnetic transitions which occur due to the boost of the poloidal component of the
force free current density Jg = Jé—?B versus the poloidal component of the diamagnetic current
density Jq = %. It has been stated [9] that the electric currents which flow parallel to the
magnetic field can be driven by the helicity injections, hence we conjecture that one can pos-
sibly control a magnetic phase transition by adjusting the toroidal current density distribution,
since it seems that it affects the force-free current density. We can briefly state that in both cases
diamagnetism emerges when the Shafranov shift increases. The solution with x, < O results in
core-diamagnetic equilibria with a paramagnetic outer layer when the Shafranov shift acquires
typical values (Fig. 2). In view of a prototype transport model which was introduced by Solano
and Hazeltine [10] we conclude that such an equilibrium is favorable for the reduction of radial
transport. According to this model the high pressure diamagnetic plasma blobs are attracted by
diamagnetic plasma regions while the low pressure paramagnetic blobs are attracted by para-
magnetic regions. Therefore the diamagnetic core suppresses outward thermal transport due to
blob convection. Also the external paramagnetic layer helps so as the plasma elements which
have lost a fraction of their thermal energy due to some interaction with the wall, be constrained
from interacting significantly with the inner hot plasma elements.

Stability Analysis. The linear stability analysis was conducted by employing a sufficient sta-

bility condition for constant mass density plasmas with incompressible flows parallel to the



43'Y EPS Conference on Plasma Physics P2.073

% ~

[ \ ST 4 \,

[ = \, % \

[ % . / \,

- /

[ J/ \ / \,
0,055 \,
0.05f K N J

N 7

[ / \,

[ / N, R

L Ny o

7 9

08 1.0 1.1 1.2 1

Figure 3: (Left) The quantity A [Eq. (6)] on the equatorial plane for equilibrium with normal magnetic
shear (dashed) and equilibrium with magnetic shear reversal (solid). For the equilibrium with shear
reversal, the stability condition A > 0 is satisfied in a broad region extended from the plasma core to
the high field side. For the normal shear equilibrium the stability condition is satisfied only within a
thin layer at the outer high-field side. (Right) The term A\ (red) versus the term A, (green) for normal
magnetic shear equilibrium (dashed) and equilibrium with shear reversal (solid). The “stable” regions
emerge when A predominates Aj.

magnetic field [8]. The equilibria examined here in terms of this condition, were obtained by
the solutions of the previous sections setting g; = 0 and p = const. The condition states that if
the flow is sub-Alfvenic, i.e. M, < 1 and the quantity A below, is positive, then the equilibrium

is linearly stable. The quantity A is given by

A=A +Ar+A3+As, Aj=—IxVu)?, Ay=IxVu)-(Vu-V)B

1 (M[%)/ 2 2 1 (MI%)/ 4 [ pr 2/ p2
_ZI_M]%|W| Vu-VB, A4—§(1_—M%)2|Vu| [Ps—(Mp) B /2] 3)

3:

A general conclusion is that the stable regions are determined by the competition of the terms
A and A,. The term A; acts always in a destabilizing manner and is possibly related to current
driven instabilities. In the case of equilibria with magnetic shear reversals the term A,, which is
related to the variation of the magnetic field perpendicular to the magnetic surfaces, is enhanced
significantly against A in a considerably large plasma region thus indicating a stabilizing effect
of reversed magnetic shear, (see Fig. 3). The contribution of the flow dependent terms A3 and

Ay to A is much weaker.
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