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Introduction. In this study we employ a linear model of Grad-Shafranov equilibria with incom-

pressible flows of arbitrary direction, in order to examine the influence of the current column

displacements on the equilibrium and stability properties of Tokamak configurations with nor-

mal and reversed magnetic shear. An interesting observation is that of magnetic phase transitions

resulting in states with coexistent diamagnetic and paramagnetic regions, in both normal and

reversed magnetic shear configurations, when the current column is shifted appropriately. These

transitions are due to the variation of the fraction of the force-free current density with respect

to the diamagnetic one, which is related to the helicity injection inside the torus. We observed

also that small displacements of the current column may result in equilibria possessing regions

with both normal and reversed magnetic shear. The shear within these regions can be enhanced

or reduced by adjusting the triangularity of the configuration.

In terms of the stability properties, the normal and reversed magnetic shear equilibria differ

upon the localization and the extent of the stable regions, stable in the sense that a sufficient

stability condition is satisfied therein. The results indicate that the reversed magnetic shear can

play a stabilizing role.

Equilibrium solutions. The computed equilibria are derived by analytical integration of the

generalized Grad-Shafranov (GGS) [1],[2] equation in cylindrical coordinates (r,φ ,z) with z

the axis of symmetry,
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where u(r,z)=
∫ ψ

0
[
1−M2

p(s)
]1/2 ds with 2πψ being the poloidal magnetic flux, Mp the poloidal

Mach function, X = X(u) a free function related to poloidal electric current, ρ = ρ(u) the mass

density function, Ps = Ps(u) the static pressure and Φ = Φ(u) the electrostatic potential. The

GGS equation written in terms of the normalized quantities can be recovered by (1) just by set-

ting µ0 = 1. A linear model which permits solutions with normal and reversed magnetic shear

relies on the inclusion of a quadratic term in the functional dependence of the free function X2

1−M2
p

upon u. For example one should consider an immediate generalization of the Solovev lineariza-
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tion as follows: X2

1−M2
p
= x0 + 2x1u+ x2u2, Ps = p0 + p1u, ρ (Φ′)2 = g0 + 2g1u. A similar

model for static plasmas was studied recently in [3]. One may derive homogeneous solutions of

eq. (1), employing the ansatz above, for both peaked and hollow current density profiles i.e. for

x2 > 0 and x2 < 0

uh(r,z) =


r ∑ j

[
a jJ1 (s+r)e jz +b jJ1 (s+r)e− jz + c jY1 (s+r)e jz +d jY1 (s+r)e− jz] , x2 > 0

r ∑ j

[
a jJ1 ( jr)es−z +b jJ1 ( jr)e−s−z + c jY1 ( jr)es−z +d jY1 ( jr)e−s−z

]
, x2 < 0

Solovev solution, e.g. see [4], x2 = 0
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Figure 1: Equilibrium con-

figurations with smooth (up)

and diverted (down) bound-

aries and ITER geometric

characteristics.

where s+ =
√

j2 + x2 and s−=
√

j2− x2 and J1, Y1 denote the first

order Bessel functions of first and second kinds respectively. The

complete solution is given by the superposition of a homogeneous

solution with some particular solution of the inhomogeneous equa-

tion, that is u = uh+up. One may find several particular solutions.

Below we give a couple of them:
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where G denotes the Meijer-G function and γ1, γ2 are arbitrary

constants. D-Shaped and diverted Tokamak equilibrium configura-

tions can be constructed (Fig. 1) by exploiting the free parameters

(a j,b j,d j,c j) as described in the works [4]-[7]. The free param-

eters (p1,x1,x2,g1) are fixed in accordance with the experimental

values of the various physical quantities and figures of merit, i.e.

beta parameter β ∼ 1%, safety factor q > 1, P∼ 105 Pa, E ∼ 104 V/m.

Equilibrium and magnetic transitions. We constructed equilibria with peaked and hollow

current density profiles. Both kinds of equilibria with normal and reversed magnetic shear were

observed. In this study the current column is shifted by imposing a condition for the position

of the toroidal current density extremum. For typical Tokamak mass flows, the flow contribu-

tion is small enough in order to neglect its contribution in the imposition of this condition:

∂r [x1/r+ x2u(r,z)/r+ p1r]
∣∣
(r=1+δr,z=δz)

= ∂zu(r,z)
∣∣
(r=1+δr,z=δz)

= 0, where (1+ δr,δz) is the

position of the current density extremum. Along with certain boundary-shaping conditions [4]
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Figure 2: (Left) The modulus of the poloidal diamagnetic current density versus the modulus of the

poloidal force-free current density for a mixed diamagnetic-paramagnetic equilibrium (the diamagnetic

plasma bulk is surrounded by a paramagnetic edge layer). (Center) The toroidal current density and

safety factor profiles for a normal magnetic shear equilibrium with paramagnetic core and diamagnetic

edge layer. (Right) The toroidal current compared to the safety factor for equilibria with hollow current

densities and different triangularities. The shear reversals occur when the current density extremum is

shifted slightly to the high-field side. The green, blue and magenta lines correspond to equilibria with

triangularities δ = 0.1, δ = 0.3, δ = 0.5 respectively.

we derive equilibria with the desired shapes and the desired current density extremum position.

It is interesting to note that for even very small values of δz the equilibria loose the desirable

nested magnetic topology. This indicates that the vertical current displacements act in an un-

favorable way as concerns the nestedness of magnetic surfaces. Varying the position δr we

observed magnetic transitions which occur due to the boost of the poloidal component of the

force free current density Jff =
J·B
B2 B versus the poloidal component of the diamagnetic current

density Jd = B×∇P
B2 . It has been stated [9] that the electric currents which flow parallel to the

magnetic field can be driven by the helicity injections, hence we conjecture that one can pos-

sibly control a magnetic phase transition by adjusting the toroidal current density distribution,

since it seems that it affects the force-free current density. We can briefly state that in both cases

diamagnetism emerges when the Shafranov shift increases. The solution with x2 < 0 results in

core-diamagnetic equilibria with a paramagnetic outer layer when the Shafranov shift acquires

typical values (Fig. 2). In view of a prototype transport model which was introduced by Solano

and Hazeltine [10] we conclude that such an equilibrium is favorable for the reduction of radial

transport. According to this model the high pressure diamagnetic plasma blobs are attracted by

diamagnetic plasma regions while the low pressure paramagnetic blobs are attracted by para-

magnetic regions. Therefore the diamagnetic core suppresses outward thermal transport due to

blob convection. Also the external paramagnetic layer helps so as the plasma elements which

have lost a fraction of their thermal energy due to some interaction with the wall, be constrained

from interacting significantly with the inner hot plasma elements.

Stability Analysis. The linear stability analysis was conducted by employing a sufficient sta-

bility condition for constant mass density plasmas with incompressible flows parallel to the
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Figure 3: (Left) The quantity A [Eq. (6)] on the equatorial plane for equilibrium with normal magnetic

shear (dashed) and equilibrium with magnetic shear reversal (solid). For the equilibrium with shear

reversal, the stability condition A > 0 is satisfied in a broad region extended from the plasma core to

the high field side. For the normal shear equilibrium the stability condition is satisfied only within a

thin layer at the outer high-field side. (Right) The term A1 (red) versus the term A2 (green) for normal

magnetic shear equilibrium (dashed) and equilibrium with shear reversal (solid). The “stable" regions

emerge when A2 predominates A1.

magnetic field [8]. The equilibria examined here in terms of this condition, were obtained by

the solutions of the previous sections setting g1 = 0 and ρ = const. The condition states that if

the flow is sub-Alfvenic, i.e. Mp < 1 and the quantity A below, is positive, then the equilibrium

is linearly stable. The quantity A is given by

A = A1 +A2 +A3 +A4, A1 =−(J×∇u)2 , A2 = (J×∇u) · (∇u ·∇)B

A3 =−
1
4

(
M2

p
)′

1−M2
p
|∇u|2∇u ·∇B2, A4 =

1
2

(
M2

p
)′(

1−M2
p
)2 |∇u|4

[
P′s−

(
M2

p
)′

B2/2
]

(3)

A general conclusion is that the stable regions are determined by the competition of the terms

A1 and A2. The term A1 acts always in a destabilizing manner and is possibly related to current

driven instabilities. In the case of equilibria with magnetic shear reversals the term A2, which is

related to the variation of the magnetic field perpendicular to the magnetic surfaces, is enhanced

significantly against A1 in a considerably large plasma region thus indicating a stabilizing effect

of reversed magnetic shear, (see Fig. 3). The contribution of the flow dependent terms A3 and

A4 to A is much weaker.
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