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I. In the present paper we develop the nonlinear theory of the magnetic electron drift
(MED) modes. These magnetic fluctuations are drift-type waves excited in non-uniform
plasma and characterized by a frequency range in-between the electron and ion plasma
frequencies. The linear theory of the modes shows that the unstable motion is physically
connected with the creation of finite electron fluid vorticity by the baroclinic vector,
vn, xVT, (n, is the background density and T,the electron temperature) and the phase

velocity of linear waves is confined to a certain interval . The electron inertia, which
manifests itself in the electron vorticity, and the temperature perturbation, are then essential
components in studies of these modes. The typical frequency of the motion is of order kv (v is
the electron thermal velocity, ™ is the characteristic length of the background
inhomogeneity). Phenomena occurring in such time scales are important as a source of
different magnetic structures encountered in space plasma, as well as in a number of plasma
devices.

To perform the analysis we derive the two-field nonlinear equations for the MED modes.
The Hamiltonian structure of these equations is identified and used then to find a complete
set of time-independent integrals of motion, including so-called Casimirs. As a next step, we
examine the stationary solutions of model equations and show that infinitely long rows of
vortices, vortex chain or vortex streets are allowed by these nonlinear equations. In recent
years, it has been appreciated that these solutions represent maximum entropy states which
are believed to be the most probable final state in decaying 2-D Navier-Stokes and similar
drift plasma turbulence. Finally, we proceed to the stability analysis. Lyapunov's direct
method is used to investigate the stability of stationary solutions with respect to small
perturbations (linear analysis). On particular example of vortex streets the linear stability for
long wave length perturbations is established. It is also shown that nonlinear stability cannot
be proven using Arnold's method.

I1. The motion of the considered modes is assumed to take place in the plane perpendicular
to the magnetic field and hence a quasi-two-dimensional analysis is applied, where only the
perturbed magnetic field is directed along the third dimension, here chosen to be the z axis.
These modes are placed in a non-uniform unmagnetized plasma with density and temperature
gradients along the x axis. The temperature and density gradients of the fluctuations are in
general not collinear, and this generates a vorticity in electron fluid. The consequent motion

generates a perpendicular magnetic field (with vanishing equilibrium part), B(x, y,t)z,
which actually plays the role of a stream function. Due to a typical time scale of the MED
modes, the ions play the role of a neutralizing background in the mode dynamics, whereas the
electrons move fast enough to equalize any density perturbation in a relatively short time.
Therefore, the electron density will be considered constant on time, n=n,. The temperature

can be written as the sum of an equilibrium value T, and a perturbation T. We assume that
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the length scale of the fluctuations is much smaller than that of the equilibrium one (this can
be expressed by small parameters &, ~|[VInny|/k and & ~|VInT|/k, where k™ ~c/ o,

is the typical spatial scale of the fluctuations), and take &, ~ &, ~ ¢ . Starting then from the

momentum equation and the energy equation, the model equations for MED mode
turbulence can be derived up to the lowest non-vanishing order in ¢ and read in
dimensionless form

0 oT

g(B—VZB)—{B,VZB}=—v05 (1a)
%+{B,T}=—WO% (1b)

Here, v, :|Vln N, (x)| , W, =T, (2v0 /3—|VInTO|) may be regarded as constant coefficients,
the length unit is (c/a;pe) , the magnetic field and the temperature are normalized by
(¢/m)B—B, and (e, /c’m)T —T, the curl brackets denote the Poisson brackets and are

defined as {a, b} = (VaxVb)-z . The dispersion relation of the linear version of Egs.(1) is

o =gy | K? /(1+k°) ] )

Note that a purely growing solution is possible for & >2/3¢, , or (v,w,) <0, which can

explain the measured strong magnetic fields in laser-produced laser experiments. Of course,
due to this linear growth, the linear approximation breaks down and nonlinear effects have to

be included. On the other hand, in a stable plasma, (vowo) >0, the phase velocity of linear
waves in the y direction has an upper limit, indeed, —(vow,)"* <@k, <(vow, )"

I11. We now consider some general properties of Egs.(1). Introducing variables g =B —V?*B
and ¢ =T —w;,X, yields the energy integral in the form

2
E=0,5[| B2 +|VB[ +-2T? [dxdy > H =0,5] Bg+ RPN g ()
WO WO

If now we introduce the state vector U = (Zj , then it easy to see that Eqs.(1) can be presented

in the Hamiltonian form

u_,s {a} {o}
E:J-g—:, where J:({Z} 0 ]

is the noncanonical Poisson matrix, &/dU s the usual variational derivative. The functional

H naturally plays the role of Hamiltonian. We employ the Hamiltonian structure to find the
set of integrals, using general methods for noncanonical systems. To this end we form the

Lie-Poisson bracket [F,H | with
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oF oH
F.H|=|— J-— |dxdy=|—-—dxd
[ ] 5u[ &ny Iéu atxy dt

if oF /ot =0. Hence, if [F, H ] =0, F is an integral of the system. We use this to construct

so-called Casimir invariants, which satisfy J -(5C/ Su)=0. The only two solutions are

C, = jqf (p)dxdy and C,= j g (¢)dxdy 4)
Furthermore, since the Hamiltonian contains a continuous symmetry in the y direction we can

find the remaining integral of the basic equations using Noether's theorem. This integral is
written as

M= j xqadxdy (5)
and can be interpreted as a conserved momentum. We have thus identified the Hamiltonian
structure of Egs.(1) and obtained all time-independent integrals.

IY. As a next step, we examine the stationary solutions of Eqgs.(1) which propagate with
constant velocity uy . Setting o/ot=-ud/dy and introducing the stream function
w = B —ux we find that the stationary solution will be given by

Vi = r(y/)+ux(1—\;—°s’(1//)j and T =s(y)+wx (6)

where rand s are arbitrary functions. We show now that in the set defined by (6) there exist
stationary solutions which are localized in one direction and periodic in the other. To this end

we choose s(://) = iy/ , 50 that the first expression in the set (6) is reduced to Vy = r(z//) :
VO

which is the relation between the stream function (l//) and the vorticity often used in the
fluid dynamics. Consider two possible particular cases, namely,

r(y)=¢sinhy and r,(y) = Aexp(—y/A) (7a)
which correspond to the "sinh-Poisson” equation and to the Liouville-equation. The

solutions of these equations are well-defined in 2-D fluid dynamics and under some
restrictions on free parameters they describe, physically, so-called "vortex streets”. If

Vzl//=l’1‘2(l//), the solutions to these equations are known as the "breather”, yw,, and
Kelvin-Stuart cat's eyes, y,, and are given by

w, = 4arctanh [E%], and y, =2AlIn [sz (Zacosh bx +2v/a? —1cos by)] (7b)
where £=b-a, a>0, b>0 (y,) and a>1 (y,), a and b are arbitrary constants. As
can be seen from (7), these solutions describe vortex flow (sz// * 0) which is localized in

the x direction and periodic iny. In the Kelvin-Stuart cat's eyes solution, v, , the parameter a

describes the width of the cat's eyes. As a decreases to 1 the cat's eyes diminish and the
limiting flow is purely zonal.

Y. We now proceed to the stability analysis of stationary solutions given by Egs.(7) using the
Lyapunov's direct method. To this end, we construct a Lyapunov functional L with zero first
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variation for (7), by means of integrals (3-5), L=E+C; +C, + AM , where 1is a Lagrange

multiplier. The first variation of L is zero for solutions (7) if g’(¢) =—a’ (V2¢—¢)—V—° ,
WO

here we assume f(¢)=a¢ and chose o =v,/4 and A =-u. Now, inserting into g'(¢)
stationary solutions (7) results in the following expression for §°L :

5L = j{(aBmaT ) +|VSB+aVsT[ —a? [|V5T|2 + r'(\;—‘)qéj(ﬂ)ﬂ}dxdy (8)

To ensure stability the second variation of L should be of definite sign. If r' >0 nothing can
be concluded about stability from (8) unless a specific relation between 6B and oT is
assumed. On the other hand, if r’ <0 we can estimate upper bound on the linear perturbation

wave number, k,, for which we have stability. To this end we need the lower bound of |r'|.
We actually have, for solutions (7a) and (7b),

0<|¢]< |l <[¢]+ 8 <on, 0<8b?(2acoshbx,,, +2d)" <

<]

where d =+/a*—1 and the region of consideration is limited by +x__.Then the stability

r,|<8b?(2a—2d)”* <o0 (9)

criterion 6°L >0 takes the form k; <c,, where ¢, is the lower limit of |I’1’| or |r2’ | in (9). So,

the linear stability of the stationary solutions (7) for long wavelength perturbations is proved.
Consider, for example the geometry of the solutiony,. If the scale of a single vortex along

the direction of the chain is Ay, and the transverse scale is AX, then stability condition can

be roughly stated k. + (AX)_2 < (Ay)_2 . Hence the solution is linearly stable to perturbations

of scale larger than Ay, and the wider the vortices (in the x direction) the shorter the scale of

the perturbations may be up to this limit.
YI. To study the nonlinear stability properties of our stationary solutions (7) we employ the
method introduced by Arnol'd for two dimensional incompressible flow. According to this

method, the nonlinear generalization of §°L , defined as L = L(B,+B,Ty+T,)—L(B,.T,),

where Bjand T, are the stationary solutions and B, and T, are small but finite perturbations,

should be restricted from above and below by positive definite quadratic forms. Then, it can
be shown, following the Arnol'd method, that an initial finite perturbations will remain
bounded for all time. Direct applications of this method to our system of equations, when B
and T vary arbitrarily and independently shows that no definite inference could be made in
the general. We believe that the stability analysis by the above mentioned method is in need
of complementary ideas. Numerical evidence that such structures are stable suggest that even
if the vortices are not stable to arbitrary large or global perturbations, they should at least be
expected to be stable to finite disturbances.



