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    I. In the present paper we develop the nonlinear theory of the magnetic electron drift 

(MED) modes. These magnetic fluctuations are drift-type waves excited in non-uniform 

plasma and characterized by a frequency range in-between the electron and ion plasma 

frequencies. The linear theory of the modes shows that the unstable motion is physically 

connected with the creation of finite electron fluid vorticity by the baroclinic vector, 

0 en T   ( 0n  is the background density and eT the electron temperature) and the phase 

velocity of linear waves is confined to a certain interval . The electron inertia, which 

manifests itself in the electron vorticity, and the temperature perturbation, are then essential 

components in studies of these modes. The typical frequency of the motion is of order κv (v is 

the electron thermal velocity, κ
-1 

is the characteristic length of the background 

inhomogeneity).  Phenomena occurring in such time scales are important as a source of 

different magnetic structures encountered in space plasma, as well as in a number of plasma 

devices.   

   To perform the analysis we derive the two-field nonlinear equations for the MED modes.  

The Hamiltonian structure of these equations is identified and used then to find a complete 

set  of time-independent integrals of motion, including so-called Casimirs. As a next step, we 

examine the stationary solutions of model equations and show that infinitely long rows of 

vortices, vortex chain or vortex streets are allowed by these nonlinear equations. In recent 

years, it has been appreciated that these solutions represent maximum entropy states which 

are believed to be the most probable final state in decaying 2-D Navier-Stokes and similar 

drift plasma turbulence. Finally, we proceed to the stability analysis. Lyapunov's direct 

method is used to investigate the stability of stationary solutions with respect to small 

perturbations (linear analysis). On particular example of vortex streets the linear stability for 

long wave length perturbations is established. It is also shown that nonlinear stability cannot 

be proven using Arnold's method.  

II.  The motion of the considered modes is assumed to take place in the plane perpendicular 

to the magnetic field and hence a quasi-two-dimensional analysis is applied, where only the 

perturbed magnetic field is directed along the third dimension, here  chosen to be the z axis. 

These modes are placed in a non-uniform unmagnetized plasma with density and temperature 

gradients along the x axis. The temperature and density gradients of the fluctuations are in 

general not collinear, and this generates a vorticity in electron fluid. The consequent motion 

generates a perpendicular magnetic field (with vanishing equilibrium part),  , ,B x y t z , 

which actually plays the role of a stream function. Due to a  typical time scale of the MED 

modes, the ions play the role of a neutralizing background in the mode dynamics, whereas the 

electrons move fast enough to equalize any density perturbation in a relatively short time. 

Therefore, the electron density will be considered constant on time, 0n n . The temperature 

can be written as the sum of an equilibrium value 0T  and a perturbation T. We  assume that 
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the length scale of the fluctuations is much smaller than that of the equilibrium one (this can 

be expressed by small parameters 0ln /n n k   and 0ln /T T k  , where 
1 / pek c 

 

is the typical spatial scale of the fluctuations), and take n T   . Starting then from the 

momentum equation and the energy equation, the model equations for MED mode 

turbulence can be derived up to the lowest non-vanishing order in   and read in 

dimensionless form 

    2 2

0,
T

B B B B v
t y

 
    

 
 (1a) 

   0,
T B

B T w
t y

 
  

 
 (1b) 

Here,  0 0lnv n x  ,  0 0 0 02 / 3 lnw T v T    may be regarded as constant coefficients, 

the length unit is  / pec  , the magnetic field and the temperature are normalized by 

 e m B B , and  2 2

pe c m T T  , the curl brackets denote the Poisson brackets and are 

defined as    ,a b a b   z . The dispersion relation of the linear version of Eqs.(1) is  

  2 2 2

0 0 1yv w k k   
 

 (2) 

Note that a purely growing solution is possible for 2 3T n  , or  0 0 0v w  , which can 

explain the measured strong magnetic fields in laser-produced laser experiments. Of course, 

due to this linear growth, the linear approximation breaks down and nonlinear effects have to 

be included. On the other hand, in a stable plasma,  0 0 0v w  , the phase velocity of linear 

waves in the y direction has an upper limit, indeed,     
1 2 1 2

0 0 0 0yv w k v w   .  

III. We now consider some general properties of Eqs.(1). Introducing variables 2q B B   

and 0T w x   , yields the energy integral in the form 

 
2

22 20 0 0

0 0

( )
0,5 dxdy  0,5
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E B B T H Bq dxdy

w w

   
         

   
   (3) 

If now we introduce the state vector 
q



 
  
 

u , then it easy to see that Eqs.(1) can be presented 

in the Hamiltonian form 

   
   

 

, ,
,   where  

, 0

qH
J J

t





  
    

  

u

u
 

is the noncanonical Poisson matrix,   u is the usual variational derivative. The functional 

H naturally plays the role of Hamiltonian. We employ the Hamiltonian structure to find the  

set of integrals, using general methods for noncanonical systems. To this end we form the 

Lie-Poisson bracket  ,F H  with  
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 ,
F H F dF

F H J dxdy dxdy
t dt

  

  

 
      

 
 

u

u u u
 

if 0F t   . Hence, if  , 0F H  , F is an integral of the system. We use this to construct 

so-called Casimir invariants, which satisfy   0J C  u . The only two solutions are 

                  and    f gC qf dxdy C g dxdy                    (4) 

Furthermore, since the Hamiltonian contains a continuous symmetry in the y direction we can 

find the remaining integral of the basic equations using  Noether's theorem.  This integral is 

written as  

    M xqdxdy                  (5) 

and can be interpreted as a conserved momentum. We have thus identified the Hamiltonian 

structure of Eqs.(1) and obtained all time-independent integrals.  

IY.  As a next step, we examine the stationary solutions of Eqs.(1) which propagate with 

constant velocity ˆuy . Setting t u y       and introducing the stream function 

B ux    we find that the stationary solution will be given by 

                         2 01
v

r ux s
u

  
 

    
 

   and     0T s w x   (6) 

where r and s  are arbitrary functions. We show now that in the set defined by (6) there exist 

stationary solutions which are localized in one direction and periodic in the other. To this end 

we choose  
0

u
s

v
  , so that the first expression in the set (6) is reduced to  2 r   , 

which is the relation between the stream function    and the vorticity  often used in the 

fluid dynamics. Consider two possible particular cases, namely, 

  1 sinhr     and     2 expr A A                         (7a) 

which correspond to the "sinh-Poisson" equation and to the Liouville-equation.  The 

solutions of these equations are well-defined in 2-D fluid dynamics and under some 

restrictions on free parameters they describe, physically, so-called "vortex streets". If  

 2

1,2r   , the solutions to these equations are known as the "breather", 1 , and 

Kelvin-Stuart cat's eyes, 2 ,  and  are given by 

    
1

sin
4arc tanh

cosh

b a y

a bx


 
   

 
,  and   2 2

2 2 ln 8 2 cosh 2 1cosA b a bx a by    
  

 (7b) 

where  1,   0,   0   b a a b     and  21  a  , a and b are arbitrary constants. As 

can be seen from (7), these solutions describe vortex flow  2 0   which is localized in 

the x direction and periodic in y.  In the Kelvin-Stuart cat's eyes solution, 2 , the parameter a 

describes the width of the cat's eyes. As a decreases to 1 the cat's eyes diminish and the 

limiting flow is purely zonal. 

Y. We now proceed to the stability analysis of stationary solutions given by Eqs.(7) using the 

Lyapunov's direct method. To this end, we construct  a Lyapunov functional L  with zero first 
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variation for (7), by means of integrals (3-5), f gL E C C M    , where  is a Lagrange 

multiplier. The first variation of  L is zero for solutions (7) if    2 2 0

0

v
g

w
          , 

here we assume  f    and chose 0v   and u   . Now, inserting into  g   

stationary solutions (7) results in the following expression for 2L : 

    
2 22 22 2 0v

L B T B T T r T dxdy
u

         
   

           
   

  (8) 

To ensure stability the second variation of L should be of definite sign. If 0r   nothing can 

be concluded about stability from (8) unless a specific relation between B and T is 

assumed. On the other hand, if 0r   we can estimate  upper bound on the linear perturbation 

wave number, 0k , for which we have stability. To this end we need the lower bound of r .  

We actually have, for solutions (7a) and (7b), 

    
2 22 2

1 max 2

8
0 ,   0 8 2 cosh 2 8 2 2

ab
r b a bx d r b a d 



               (9) 

where 2 1d a   and the region of consideration is limited by maxx .Then the stability 

criterion 2 0L   takes the form 2

0 1k c , where 1c is the lower limit of 1r or 2r  in (9). So, 

the  linear stability of the stationary solutions (7) for long wavelength perturbations is proved. 

Consider, for example the geometry of the solution 1 .   If the scale of a single vortex along 

the direction of the chain is y , and the transverse scale is x , then  stability condition can 

be roughly stated    
2 22

0k x y
 

    . Hence the solution is linearly stable to perturbations 

of scale larger than y , and the wider the vortices (in the x direction) the shorter the scale of 

the perturbations may be up to this limit. 

YI.  To study the nonlinear stability properties of our stationary solutions (7) we employ the 

method introduced by Arnol'd for two dimensional incompressible flow. According to this 

method, the nonlinear generalization of 2L , defined as    0 1 0 1 0 0, ,L L B B T T L B T    , 

where 0B and 0T are the stationary solutions and 1B  and 1T  are small but finite perturbations, 

should be restricted from above and below by positive definite quadratic forms. Then, it can 

be shown, following the Arnol'd method, that an initial finite perturbations will remain 

bounded for all time. Direct applications of this method to our system of equations, when B  

and T vary arbitrarily and independently shows that no definite inference could be made in 

the general. We believe that the stability analysis by the above mentioned method is in need 

of complementary ideas. Numerical evidence that such structures are stable suggest that even 

if the vortices are not stable to arbitrary large or global perturbations, they should at least be 

expected to be stable to finite disturbances.  
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