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The set of magnetic equilibrium sensors
at the Wendelstein 7-X stellarator (W7-X) in
Greifswald, Germany [1, 2] consists of dia-
magnetic loops, continuous and segmented
Rogowski coils and saddle loops (fig. 1 a) [3].
The diamagnetic energy, net toroidal current
and moments of the current profiles are tar-
geted. About 50% of the magnetic sensors
were operational during the first experimental
phase of W7-X (OP1.1) and have been suc-
cessfully commissioned. Due to the design of
the thermal shielding, which has been devel-
oped with regard to future long pulse opera-
tion (up to 1800s), neither critical heat loads
nor thermal damage of the magnetic sensors
have been detected. In the present contribu-
tion first measurement results will be dis-
cussed.

An automatized, multi-channel data record-
ing system, as well as corresponding data
evaluation software tools have been de-
veloped and established. The individually

adapted sensor design and a corresponding
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Figure 1: a) Magnetic diagnostics at Wendel-
stein 7-X b) Measurements of the diamagnetic
energy and plasma current during a 6s hy-
drogen plasma with T, ~ 5keV and n, ~ 2 x

10"9m=3.

electrical shielding scheme ensure low signal noise levels and high signal integration accuracy.
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In fig. 1 b time traces of evaluated data recorded during a 6 s hydrogen plasma are depicted.

The compensated diamagnetic energy mea-
sured by the diamagnetic loop (triangular
shaped plasma cross-section) remains con-
stant after plasma build up. The total toroidal
plasma current measured by the continu-
ous Rogowski coil (triangular shaped plasma
cross-section) rises until the plasma heating
stops and the plasma collapses. First esti-
mates of confinement times in typical hy-
drogen plasmas are of the order of 100-
200 ms. These values are similar compared to
data analysis results involving electron tem-
perature and density profile data from the
Thomson scattering diagnostic. They are also
comparable to predictions based on empirical
scaling laws, like ISS04 [4].

Current fluctuations in the main supercon-
ducting field coil system and currents, which
are induced in the plasma vessel, affect the
measurement of the diamagnetic energy. A
compensation of the main diamagnetic loop
in the triangular shaped plasma cross-section
is performed via a set of four compensation
coils located in the vicinity of the main loop
(insert in fig. 2 a). The compensation coils do
not encircle the plasma and can therefor be

used to correct the signal of the main diamag-
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Figure 2: a) Measured magnetic fluxes during
a current ramp in the superconducting magnet
system. The arrangement of diamagnetic main
loop (black) and compensation coils (red) is
shown in the embedded sketch. b) Direct com-
parison of uncompensated and compensated
measured diamagnetic energy as described in

the text.

netic loop for non-plasma related magnetic flux changes. A calibration for the compensation

has been performed during a predefined current ramp of 15 A/s in the main field coils with-

out plasma recording the magnetic fluxes of the diamagnetic loop (¢y;,) and the compensation

coils (¢g’0mp). During the ramp a calibration factor C is determined under the assumption of

O4ia —CY. ¢c’:0mp L 0. The compensated diamagnetic energy can then be derived approximately

as Wyi, = —o®/(3nRyBy) [5] with the major radius R, the magnetic field By and the com-
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pensated diamagnetic flux ® = ¢ ;, — CY. 9!, - In fig. 2 a the measured magnetic fluxes of the

diamagnetic loop and the compensation coils during the calibration are depicted.

The determined calibration factor C ~ 7.65
agrees within 1% with corresponding Biot-
Savart calculations. The effect of the net toroidal
plasma current on the presented diamagnetic en-
ergy estimation is found to be less than 1%.

The derived compensated diamagnetic energy
is shown in Fig. 2b in comparison with the cor-
responding uncompensated signal. During the
plasma build-up phase an expected faster re-
sponse time in the compensated signal is ob-
served. Residual effects due to influences men-
tioned above can clearly be seen in the uncom-
pensated signal after the plasma heating stops.
An improved compensation scheme taking into
account a small plasma effect on the compensa-
tion coils is currently under development.

A number of Rogowski coil segments have
been installed at W7-X mainly to obtain in-
formation on plasma current distributions. An
arrangement of eight segments in the trian-
gular shaped plasma cross-section is depicted
in fig. 3a. Due to the gaps between the seg-
ments the sum of the measured signals is ex-
pected to be slightly smaller when compared
to the continuous Rogowski coil signal in the
triangular shaped plasma cross-section, which
has been experimentally confirmed (fig. 3b).
However the individual segment signals show
a clear dipolar structure, as depicted in fig. 3 c,
which mainly corresponds to the related Pfirsch-

Schliiter-current pattern in the plasma.
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Figure 3: a) Arrangement of eight Rogowski

segments; b) The sum of the signals is

slightly smaller compared to the signal of

the continuous Rogowski coil. c) Individual

magnetic fluxes of Rogowski segments

A rough calibration of the diamagnetic loops, saddle loops and Rogowski coils has been done.
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For that purpose the corresponding magnetic flux changes were recorded during previously de-
fined current ramps in the trim coils of W7-X. A calibration matrix was derived by comparing
the sensor responses to mutual inductances calculated with the DIAGNO code [6, 7]. First
equilibrium reconstructions based on the calibrated magnetic measurements have been success-
fully performed by using VMEC [8] and STELLOPT [9, 10]. A combined reconstruction based
on magnetic measurements as well as plasma profile data of electron cyclotron emission and
Thomson scattering diagnostics is currently being implemented. A precise calibration of the
continuous Rogowski coils is planned for the time prior to the next campaign using a current
conductor being temporally installed in the vacuum vessel.

For investigating magnetohydrody- id#20160310.007
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sured during the previously shown 65
hydrogen plasma. A clear mode activity at about 7 kHz is found, which has been also observed
with various other diagnostic systems, like electron cyclotron emission measurements and cor-
relation reflectometry. Possible mode locations and associated mode numbers are currently be-
ing investigated.
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