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Introduction
Runaway electron (RE) generation in the presence of electric fields is common in both

laboratory and space plasmas [1]. In laboratory plasmas, much attention has been given to the
highly relativistic RE beams that can be generated in tokamak disruptions. Such REs may
damage plasma facing components due to their highly localized energy deposition. The
potential for detrimental effects increases with plasma current. Therefore, understanding the
processes that may eliminate RE beam formation is very important for future reactor-scale
tokamaks with high currents, such as ITER [2]. In several tokamak experiments it has been
observed that RE generation only occurs above a threshold toroidal magnetic field [3, 4].
While the origin of this threshold is uncertain, it has been linked to decreased relative
magnetic fluctuation levels [4-6].
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and most of the power is in the range from 80 to 150 kHz. Comparing the signals of different
Mirnov coils distributed along the poloidal circumference of the liner shows that the magnetic
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Figure 4: Relationship between the RE

current and the mode level 6B/B. The mode frequency is higher at low density and
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decreases with the increase of ne (fig. 3(b, ¢)), suggesting that the mode has the behavior of an
Alfvén-like mode. The statistical analysis with a few MGI induced disruptions shots and
natural disruptions shots both with RE plateaus was made to verify the relationship between
Alfvén speed Va = Br*nsY? and mode frequency. It is found that the mode frequency
increases with plasma density and scales rougly with n., consistent with the characteristic
of the toroidal alfvén eignmode (TAE), as shown in Fig.4.

In order to prove this point, we have calculated the spectrum of Alfvén modes using the

shear Alfvén dispersion relation [7]:
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illustrated in figure 5 at two different densities
during the CQ phase. Figures 5 (a) and (b) show
that the measured frequencies are f~130kHz and
60-100kHz at ne=1.1x10"m™ and 1.8x10"°m>,
respectively, which are in fairly agreement with
the simualted gap frequecnies of the TAE
modes, as depicted in figures 5(c) and (d).
Therefore, the mode is an TAE mode.
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Figure 5: Spectrograms (a) (b) and the Alfvén
Spectrum simulations (c) (d) of thehigh
frequency mode during the current quench phase
with the different electron density in shot 27898.
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Figure 6: (a) Time traces from three discharges in the
CQ phase showing: plasma current IP and magnetic
turbulence dB/dt in shots 25406, 25407 and 25408.
(b) The mode level oB/By during RET and REP cases.

(Ninj). Figure 6(a) shows the I, of the three
continuous shots with different Nj,;. The
parameters of all shots 25406, 25407 and
25408 are the same except for the Niy;, but
the RE generation is totally different. The
increasing Ni,; of Ar leads to different
kinds of disruption: internal reconnections
events (IR); RE Tail (RET) and RE
Plateau (REP). RET develops a small RE

current tail, and REP has a RE plateau
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during the current quench. However, IR does not produce any RE current. Meanwhile,
obvious magnetic instabilities are seen during CQ phase in signals from magnetic pick-up
coils, shown in Fig. 6(a). The magnetic turbulence appears at IR case is obviously different
from those of RET and REP, because the frenqucy(~20kHz) is quite lower than those of two
others(~100kHz). It indicates the high frequency mode only occurs before the RE generation.
Figure 6(b) compares the mode level 6B/Bt during RET and REP cases, respectively. The
OB/B+ of RET is about 1.5 times than that of REP. Anomalous RE losses with RET are

therefore much larger than with REP.
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Figure 7: Relationship between the RE lower mode level than the threshold, it is found that the
currentand the mode level oB/Br. RE current decreases almost linearly with 6B/Br. It has
been found that in case of small 6B/Br, the bursts in the ECE emission and subsequent
radiation level in the hard X-ray are much weaker, and correspondingly, the RE current
becomes larger. This result clearly indicates that this magnetic mode plays a scattering role on
the RE beam strength and is the cause of the different observed RE current. The excitation of
the mode might be driven by a steep spatial gradient of REs or whistling runaway ions form
an invertedenergy distribution[7]. The magnetic perturbation associated with the instability is
expected to scatter the runaway electrons and in certain cases may therefore stop beam
formation.
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