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In this letter, we report the study of synergistic impact of E, and collisionality on ELM size,
i.e., the ELM induced energy losses. The simulation results show that for the low collisionality
case, when E, is increased by about 3 times to ~ 3E,, the energy losses induced by ELM will
significantly increase by a factor of 2. On the contrary, we can try to find a way to decrease
the shear flow to mitigate the ELM, i.e., change the toroidal rotation while the pressure pro-
file is kept the same, which is applied in our simulations. The experiments with periodically
alternating co-NBI and ctr-NBI at high collisionality case have been carried out on EAST. The
shear flow is significantly enhanced while the electron density and temperature profiles remain
the same at counter-NBI (ctr-NBI) case, resulting a great suppression of ELM. The results are
consistent with simulations at high collisionality case and providing a direct evidence that the
radial electric field E, can impact the ELM a lot.

Here, the simulations are conducted using the a simple three-field two-fluid model, which
is extracted from a complete set of BOUT two-fluid equations with an additional effect of
hyper-resistivity[9][6][1][7]. The model consists of minimum set of nonlinear equations for
perturbations of the magnetic flux A}, electric potential ¢, and pressure P, which is described in
detail in Ref. [8]. The non-ideal physics effects include diamagnetic drift, £ x B drift for typical
pedestal plasma.
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Vno=9 = 0.9kHz, Vp—12 = 1.9kHz and V,,—20 =

6.9kHz. Here, for each scan of the density ny, we examine two cases with electric field profiles
changed by a factor of ~ 3, i.e. with E, = —64kV /m and E, = —22kV /m for ng = 5 x 109m =3,
respectively. Here, the toroidal plasma rotation is changed to keep the setup of E, consist with
force balance equation. Then, for each case with different density ng and electric field E,, we re-
produce the magnetic equilibrium with toroidal equilibrium module (TEQ) in CORSICA code,
while keeping the plasma cross-sectional shape, total stored energy, total plasma current, pres-
sure, the radial location of the top of the pedestal density and temperature, the ratio of the
density gradient scale length to the temperature scale length profiles fixed.

To investigate the ELM energy loss scaling with density, the difference between the pre-ELM
and post-ELM pressure profiles can be integrated to determine the ELM energy lost at an ELM.
We define an ELM size or ELM loss fraction as Agry = AWpgp /Wpgp = <f$zm dy $JdOdE(Py—
(P)e))e/ f%j“’ dy §Jd0d{ , the ratio of the ELM energy loss (AWpgp) to the pedestal stored
energy W4, the ELM size can be calculated from each nonlinear simulation. Here, F is the
pre-ELM pedestal pressure, P is the pedestal pressure during an ELM event, and symbol (),
means the average over bi-normal periodic coordinate. The lower integral limit is the pedestal
inner radial boundary y;,,, while the upper limit is the pivot point ¥, (the radial position of the
peak pressure gradient), J is the Jacobian.
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high collisionality case with ny = 20 and E, = —16.2kV /m, the ELM size becomes smaller
comparing to the lower |E,| case with E, = —5.7kV /m. The impact of E, on pressure profiles
have been further studied. Fig.1 (b) and (c) illustrate the profile evolutions at E, = —22kV /m
and E, = —64kV /m with the pedestal density fixed at np = 5. In Fig.1 (b), the pressure profile
crashes at t = 16014 and relaxes further at = 20014. Here, T4 = 3.4 x 10~ s is the Alfvén time.
When pedestal crash occurs, filaments are generated and evolve into fully developed turbulence.
Here the definition of a filament is a helical coherent structure which moves and bursts radially
outward. In Fig.1 (c), the pressure profile remains nearly unchanged before t = 16074 and start
to crash at r ~ 20074. The profile evolutions indicate that more negative E, can accelerate the
crash of the pedestal and cause larger outward energy loss.

Fig2 (al~bl) illustrate the amplitude spectrum in nonlinear simulations with different pedestal
density just at the ELM crash. As the pedestal density decreases, the dominant mode number
shifts to lower n, which is consistent with linear study[8]. The reason is that the bootstrap cur-
rent plays a complex dual role in the pedestal. On the one hand, increasing currents drive peeling
instabilities at low n; while at the same time the increasing pedestal current increases the local
magnetic shear, which stabilizes high-n ballooning modes.

The impact of nonlinear interaction on the
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Figure 3: Simulation results for E, (black)
controlled by changing the growth rate spectrum or
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show great difference, as illustrated the solid and lisionality.

dash line in Fig.3(a). The results show that with

larger amplitude of E,, the growth rate of peeling mode change from ¥py; = 0.060 to 0.075
for nyp = 5, while at the same time, growth rate of ballooning mode remains almost the same,

which can also be seen in Fig.3(a). Yet, the mechanism how the electric field affecting (in-
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creasing the drive or decreasing the damping) on the growth rate of peeling mode needs further
study.

All those results indicate that the both collisionality and E, can affect the ELM energy loss.
Unfortunately, when the tokamak size increases to a large fusion reactor like ITER, the colli-
sionality will decrease and amplitude of E, will increase. Yet, in other words, if we can find a
way to reduce the amplitude of E,, i.e., keep the pressure gradient remain the same but speed
up toroidal co-rotation of the plasma or slow down the poloidal rotation, then we may mitigate
the ELM from our prediction.
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