

Translational symmetry with phase shift in Ballooning Mode

M. Kikuchi^{1,2}

¹ National Institutes for Quantum and Radiological Science and Technology, Naka, Japan

² ILE, Osaka University, Japan

Introduction

Understanding of two-dimensional structure of the toroidal drift waves is a long standing subject in fusion research. I revisited this issue recently for writing an introductory book on modern tokamak physics [1]. Lee-Van Dam[2] and Zakharov [3] assumed a radial translational symmetry to derive a quasi-mode representation of the ballooning mode, while J. Connor derived it based on the Fourier transformation [4]. Here I show a smooth way to connect these two approaches including a phase shift θ_k by use of δ -function formula.

Two dimensional eigenmode structure is categorized into passing and trapped modes[5] and the formula for radially overlaped mode envelope widths are discussed by Romanelli[8] and Taylor[10] for the trapped mode and by Kim-Kishimoto[11] for the passing mode. I revisited these formula and slightly modified result is obtained.

Poloidal harmonics expression from the Eikonal form

In the ballooning approximation $k_{\parallel} \ll k_{\perp}$ in an axisymmetric tokamak, the eigenmode $\varphi(r, \theta, \zeta)$ to satisfy double periodicity in (θ, ζ) is given by the infinite summation of the Eikonal form $\hat{\varphi}(r, \eta, \zeta) = u(r, \eta) e^{iS(r, \alpha)}$ in the covering space $\eta \in (-\infty, +\infty)$ using $S = -n(\alpha + \alpha_0(r))$ as,

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{j=-\infty}^{+\infty} u(r, \theta + 2\pi j) e^{inq(\theta - \theta_0 + 2\pi j)}, \text{ where } q(r)\theta_0(r) \equiv \int \theta_k dq \quad (1)$$

Here the coordinates (r, θ, ζ) is a flux coordinates and $\theta_k(r) = \alpha'_0(r)/q'(r)$ [5], [6], $\alpha = \zeta - q\theta$. Using the δ function, an integral form is obtained.

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{j=-\infty}^{+\infty} \int_{-\infty}^{+\infty} d\eta u(r, \eta + \theta_0) \delta(\eta - (\theta - \theta_0 + 2\pi j)) e^{inq\eta} \quad (2)$$

If we apply the delta function formula $2\pi \sum_{j=-\infty}^{+\infty} \delta(x - 2\pi j) = \sum_{m=-\infty}^{+\infty} e^{-imx}$ and set $x = \eta - \theta + \theta_0$, we have:

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{m=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{d\eta}{2\pi} u(r, \eta + \theta_0) e^{i(nq-m)\eta} e^{im(\theta - \theta_0)} \quad (3)$$

If we define $\eta' = \eta + \theta_0$, above equation is rewritten as,

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{m=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{d\eta'}{2\pi} u(r, \eta') e^{i(nq-m)\eta'} e^{-inq\theta_0} e^{im\theta} \quad (4)$$

In this expression, we see $nq - m$ is a fast varying radial variable conjugate to η' . Renaming η' to η , we have following expression for the eigen function.

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{m=-\infty}^{+\infty} \varphi_0(r, nq - m) e^{-inq\theta_0} e^{im\theta} \quad (5)$$

Here, $\varphi_0(r, nq - m)$ is given by the following radial Fourier integral.

$$\varphi_0(r, nq - m) = \int_{-\infty}^{+\infty} \frac{d\eta}{2\pi} u(r, \eta) e^{i(nq - m)\eta} \quad (6)$$

We find that the phase shift term is not $e^{-im\theta_0}$ but is $e^{-inq\theta_0} = e^{-i \int_{nq_0}^q \theta_k d(nq)}$.

Bloch Angle and Radial Envelope Formula

The function $\varphi(r, nq - m)$ represents a localized eigenfunction near the rational surface $q(r_m) = m/n$ having the translational symmetry in the radial direction $--, r_{m-1}, r_m, r_{m+1}, --$. If we pick up phase shifts for these rational surfaces ($\Delta nq = 1$), we have,

$$\int_{nq_0}^{nq} \theta_k(q) d(nq) \sim \sum_{j=nq_0}^m \theta_k(j/n) \quad (7)$$

The phase shift between adjacent rational surface is called the "Bloch angle" due to its similarity to the solid state physics but changes radially. The Bloch angle is therefore θ_k and not θ_0 defined in (1) adopted from Hazeltine-Meiss [14]. If the $\varphi_0(r, nq - m)$ is extremely peaked at $nq = m$, we can approximate $e^{-inq\theta_0} \rightarrow e^{-im\theta_0}$ to reach,

$$\varphi(r, \theta, \zeta) = e^{-in\zeta} \sum_{m=-\infty}^{+\infty} \varphi_0(r, nq - m) e^{im(\theta - \theta_0)} \quad (8)$$

In this case, the phase angles of all poloidal harmonics becomes zero at $\theta = \theta_0$ so that we can argue θ_0 is a measure of poloidal angle where the mode elongation is purely radial as discussed by Kishimoto [12] but may not be the tilting angle [13].

If we expand $\theta_k(r)$ in Taylor series as $\theta_k(r) = \theta_k(r_m) + \theta'_k(r_m)(r - r_m) + --$, we can assume $\theta_k(r_m)$ is real if the mode amplitude is maximum at $r = r_m$. However, the $\theta'_k(r_m)$ may have both real and imaginary parts. For the imaginary part $Im[\theta_k]$, the phase shift term $e^{-i \int \theta_k d(nq)}$ is,

$$\exp \left[n \int Im[\theta_k] dq \right] = \exp \left[-\alpha(r - r_m)^2 \right], \text{ where } \alpha = -Im[\theta'_k(r_m)]nq'(r_m)/2 \quad (9)$$

This α characterizes the radial full width $\Delta r = 2\alpha^{-1/2}$ of ballooning mode peaked at $r = r_m$. For the real part $Re[\theta_k]$, the phase shift term $e^{-in \int Re[\theta_k] dq}$ is expanded as,

$$\exp \left[-i[\theta_k(r_m)nq'(r_m)(r - r_m) + Re(\theta'_k(r_m))nq'(r_m) \frac{(r - r_m)^2}{2} + --] \right] \quad (10)$$

So the $Re(\theta'_k(r_m))$ is related to poloidal tilting of radially elongated mode structure.

Local Dispersion Relation

The local dispersion relation may be given as $F(\omega, q, \theta_k) = 0$, where q is a radial coordinate. Dewar[6] analyzed characteristics of dispersion relation and applied Bohr-Sommerfeld condition for trapped and passing modes in general two dimensional eigenmode equation in particular for the ideal MHD stability. Later, Taylor[9] discussed Bohr-Sommerfeld condition for application to toroidal drift waves. Zonca-Chen [7] applied this technique in TAE analysis (trapped mode) and Romanelli-Zonca [8] for ITG mode. Number of authors calculated the local dispersion relations.

Envelope width for Passing Mode

If the local dispersion function $F(\omega, q, \theta_k)$ is monotonic ($\partial F / \partial q \neq 0, \partial F / \partial \theta_k \neq 0$), we write the dispersion relation by $\omega = \omega(r, \theta_k) = \omega_r(r, \theta_k) + i\omega_i(r, \theta_k)$ and the mode is passing mode (or not trapped) in a sense of Dewar [5], the radial derivative of the local dispersion relation is given by $\partial_r \omega + (\partial_{\theta_k} \omega) \theta'_k(r_m) = 0$, which gives following expression for α .

$$\alpha = \text{Im} \left[\frac{\partial_r \omega}{\partial_{\theta_k} \omega} \right] \frac{nq'(r_m)}{2} = - \frac{\partial_r \omega_r}{\partial_{\theta_k} \omega_i} \frac{nq'(r_m)}{2} \quad (11)$$

Here, the last equation is derived assuming that the mode frequency ω is dominated by the real oscillation so that $\partial \omega / \partial r$ is also dominated by the real part. Addition of the Doppler-shifted real frequency and a particular choice of growth rate $\omega_i = \gamma_0 \cos \theta_k$ leads to Kim-Kishimoto formula for the full width of radially overlapped envelope[13] using $nq' = k_\theta s$ where $s = rq'/q$ is the magnetic shear.

$$\Delta r = 2 \sqrt{\frac{2\gamma_0 \sin \theta_k}{k_\theta s \partial_r(\omega_r + \omega_f)}} \quad (12)$$

Envelope width for Trapped Mode

If the local dispersion function $F(\omega, q, \theta_k)$ has extremal at $(q, \theta_k) = (q_0, \theta_{k0})$, radial mode width is given in a different form. We may expand in a quadratic form using $F_0 = -F(\omega, q_0, \theta_{k0})$.

$$-F_0 + \frac{1}{2} [F_{qq}(q - q_0)^2 + F_{\theta_k \theta_k}(\theta_k - \theta_{k0})^2] = 0 \quad (13)$$

Here $F_{qq} = \partial^2 F / \partial q^2$ and $F_{\theta_k \theta_k} = \partial^2 F / \partial \theta_k^2$. The equi-contour surface becomes elliptic and gives two branches of solutions $\theta_k^\pm(\omega, q) = \theta_{k0} \pm \sqrt{F_{qq}/F_{\theta_k \theta_k}} \sqrt{a^2 - (q - q_0)^2}$ to satisfy the local dispersion relation. Here $a^2 = 2F_0/F_{qq} = (q_2 - q_1)^2/4$. The WKBJ solutions are given by $\exp(-in \int^q \theta_k^\pm dq)$. In this case, right and left travelling waves produces a standing wave if the Bohr-Sommerfeld condition $n \int_{q_1}^{q_2} (\theta_k^+ - \theta_k^-) dq = 2\pi(N + 1/2)$ is met. Changing integration from dq to $d\varphi$ by the transformation $q - q_0 = a \sin \varphi$ and let $N = 0$, we have,

$$q_2 - q_1 = \frac{2}{\sqrt{n}} \left(\frac{F_{\theta_k \theta_k}}{F_{qq}} \right)^{1/4} \quad (14)$$

We obtain slightly different formula compared with the equation (11) in [10].



Figure 1: (a) Radially overlapped ballooning eigenmode structure with phase shift θ_k and $1/e$ full width of envelope. (b) Example of phase alignment in the flux coordinates with constant θ_0 . In the flux coordinates, constant poloidal angle line is curved in (R, Z) plane and tilting due to θ'_k will be superposed on it.

Acknowledgement: The author acknowledge former director of JT-60, M. Azumi for useful discussions.

References

- [1] M. Kikuchi, M. Azumi, *Frontier in Fusion Research II - Introduction to Modern Tokamak Physics*, (Springer, 2015), Chapter 6.
- [2] Y.C. Lee, J.W. Van Dam, *Kinetic theory of ballooning instabilities*, in Proc. Finite Beta Theory Workshop, Varenna, 1977, p93.
- [3] L.E. Zakharov, *High-wave number MHD-mode stability in high-pressure tokamaks*, in plasma physics and controlled nuclear fusion research (Proc. 7th Int. Conf. Innsbruck, 1978) Vol 1(IAEA, Vienna, 1979) p689.
- [4] J.W. Connor, R.J. Hastie, J.B. Taylor, Phys. Rev. Lett. **40**, 396(1978).
- [5] R.L. Dewar, M.S. Chance, A.H. Glasser, J.M. Green, E.A. Frieman, *WKB theory for high- n modes in axisymmetric toroidal plasmas*, PPPL Report 1587(1979)
- [6] R. L. Dewar, J. Manickam, R.C. Grimm, M.S. Chance, Nuclear Fusion **21**, 493(1981).
- [7] F. Zonca, L. Chen, Phys. Fluids B **5**, 3668(1993)
- [8] F. Romanelli, F. Zonca, Phys. Fluids B **5**, 4081(1993)
- [9] J.B. Taylor, Plasma Phys. Control. Fusion **35**, 1063(1993)
- [10] J.B. Taylor, H.R. Wilson, J.W. Connor, Plasma Phys. Control. Fusion **38**, 243(1996)
- [11] J.Y. Kim, Y. Kishimoto, M. Wakatani, T. Tajima, Phys. Plasmas **3**, 3689(1996)
- [12] Y. Kishimoto, T. Tajima, W. Horton, M.J. LeBrun, J.Y. Kim, Phys. Plasmas **3**, 1289(1996)
- [13] Y. Kishimoto, J.Y. Kim, W. Horton, T. Tajima, MJ LeBrun, H. Shirai, Plasma Phys. Control. Fusion **40**, A663(1998)
- [14] R.D. Hazeltine, J.D. Meiss, *Plasma Confinement*, (Dover, New York, 2003)