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Introduction

Understanding of two-dimensional structure of the toroidal drift waves is a long standing

subject in fusion research. I revisited this issue recently for writing an introductory book on

modern tokamak physics [1]. Lee-Van Dam[2] and Zakharov [3] assumed a radial translational

symmetry to derive a quasi-mode representation of the ballooning mode, while J. Connor de-

rived it based on the Fourier transformation [4]. Here I show a smooth way to connect these two

approaches including a phase shift θk by use of δ -function formula.

Two dimensional eigenmode structure is categorized into passing and trapped modes[5] and

the formula for radially overlaped mode envelope widths are discussed by Romanelli[8] and

Taylor[10] for the trapped mode and by Kim-Kishimoto[11] for the passing mode. I revisited

these formula and slightly modified result is obtained.

Poloidal harmonics expression from the Eikonal form

In the ballooning approximation k∥≪ k⊥ in an axisymmetric tokamak, the eigenmode φ(r,θ ,ζ )

to satisfy double periodicity in (θ ,ζ ) is given by the infinite summation of the Eikonal form

φ̂(r,η ,ζ ) = u(r,η)eiS(r,α) in the covering space η ∈ (−∞,+∞) using S =−n(α +α0(r)) as,

φ(r,θ ,ζ ) = e−inζ
+∞

∑
j=−∞

u(r,θ +2π j)einq(θ−θ0+2π j), where q(r)θ0(r)≡
∫

θkdq (1)

Here the coordinates (r,θ ,ζ ) is a flux coordinates and θk(r) = α ′
0(r)/q′(r)[5], [6], α = ζ −

qθ . Using the δ function, an integral form is obtained.

φ(r,θ ,ζ ) = e−inζ
+∞

∑
j=−∞

∫ +∞

−∞
dηu(r,η +θ0)δ (η − (θ −θ0 +2π j))einqη (2)

If we apply the delta function formula 2π
+∞

∑
j=−∞

δ (x−2π j) =
+∞

∑
m=−∞

e−imx and set x = η −θ +θ0,

we have:

φ(r,θ ,ζ ) = e−inζ
+∞

∑
m=−∞

∫ +∞

−∞

dη
2π

u(r,η +θ0)ei(nq−m)ηeim(θ−θ0) (3)

If we define η ′ = η +θ0, above equation is rewritten as,

φ(r,θ ,ζ ) = e−inζ
+∞

∑
m=−∞

∫ +∞

−∞

dη ′

2π
u(r,η ′)ei(nq−m)η ′

e−inqθ0eimθ (4)
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In this expression, we see nq−m is a fast varying radial variable conjugate to η ′. Renaming

η ′ to η , we have following expression for the eigen function.

φ(r,θ ,ζ ) = e−inζ
+∞

∑
m=−∞

φ0(r,nq−m)e−inqθ0eimθ (5)

Here, φ0(r,nq−m) is given by the following radial Fourier integral.

φ0(r,nq−m) =
∫ +∞

−∞

dη
2π

u(r,η)ei(nq−m)η (6)

We find that the phase shift term is not e−imθ0 but is e−inqθ0 = e−i
∫ q

q0
θkd(nq).

Bloch Angle and Radial Envelope Formula

The function φ(r,nq−m) represents a localized eigenfunction near the rational surface q(rm)=

m/n having the translational symmetry in the radial direction −−,rm−1,rm,rm+1,−−. If we

pick up phase shifts for these rational surfaces (∆nq = 1), we have,∫ nq

nq0

θk(q)d(nq)∼
m

∑
j=nq0

θk( j/n) (7)

The phase shift between adjacent rational surface is called the "Bloch angle" due to its simi-

larity to the solid state physics but changes radially. The Bloch angle is therefore θk and not θ0

defined in (1) adopted from Hazeltine-Meiss [14]. If the φ0(r,nq−m) is extremely peaked at

nq = m, we can approximate e−inqθ0 → e−imθ0 to reach,

φ(r,θ ,ζ ) = e−inζ
+∞

∑
m=−∞

φ0(r,nq−m)eim(θ−θ0) (8)

In this case, the phase angles of all poloidal harmonics becomes zero at θ = θ0 so that we can

argue θ0 is a measure of poloidal angle where the mode elongation is purely radial as discussed

by Kishimoto [12] but may not be the tilting angle [13].

If we expand θk(r) in Taylor series as θk(r) = θk(rm)+θ ′
k(rm)(r− rm)+−−, we can assume

θk(rm) is real if the mode amplitude is maximum at r = rm. However, the θ ′
k(rm) may have both

real and imaginary parts. For the imaginary part Im[θk], the phase shift term e−i
∫

θkd(nq) is,

exp
[

n
∫

Im[θk]dq
]
= exp

[
−α(r− rm)

2] , where α =−Im[θ ′
k(rm)]nq′(rm)/2 (9)

This α characterizes the radial full width ∆r = 2α−1/2 of ballooning mode peaked at r = rm.

For the real part Re[θk], the phase shift term e−in
∫

Re[θk]dq is expanded as,

exp
[
−i[θk(rm)nq′(rm)(r− rm)+Re(θ ′

k(rm))nq′(rm)
(r− rm)

2

2
+−−]

]
(10)

So the Re(θ ′
k(rm)) is related to poloidal tilting of radially elongated mode structure.
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Local Dispersion Relation

The local dispersion relation may be given as F(ω ,q,θk) = 0, where q is a radial coordi-

nate. Dewar[6] analyzed characteristics of dispersion relation and applied Bohr-Sommerfeld

condition for trapped and passing modes in general two dimensional eigenmode equation in

particular for the ideal MHD stability. Later, Taylor[9] discussed Bohr-Sommerfeld condition

for application to toroidal drift waves. Zonca-Chen [7] applied this technique in TAE analysis

(trapped mode) and Romanelli-Zonca [8] for ITG mode. Number of authors calculated the local

dispersion relations.

Envelope width for Passing Mode

If the local dispersion function F(ω,q,θk) is monotonic (∂F/∂q ̸= 0, ∂F/∂θk ̸= 0), we write

the dispersion relation by ω = ω(r,θk) = ωr(r,θk)+ iωi(r,θk) and the mode is passing mode

(or not trapped) in a sense of Dewar [5], the radial derivative of the local dispersion relation is

given by ∂rω +(∂θkω)θ ′
k(rm) = 0, which gives following expression for α .

α = Im
[

∂rω
∂θkω

]
nq′(rm)

2
=− ∂rωr

∂θkωi

nq′(rm)

2
(11)

Here, the last equation is derived assuming that the mode frequency ω is dominated by the real

oscillation so that ∂ω/∂ r is also dominated by the real part. Addition of the Doppler-shifted

real frequency and a particular choice of growth rate ωi = γ0cosθk leads to Kim-Kishimoto

formula for the full width of radially overlapped envelope[13] using nq′ = kθ s where s = rq′/q

is the magnetic shear.

∆r = 2

√
2γ0sinθk

kθ s∂r(ωr +ω f )
(12)

Envelope width for Trapped Mode

If the local dispersion function F(ω,q,θk) has extremal at (q,θk) = (q0,θk0), radial mode

width is given in a different form. We may expand in a quadratic form using F0 =−F(ω,q0,θk0).

−F0 +
1
2
[
Fqq(q−q0)

2 +Fθkθk(θk −θk0)
2]= 0 (13)

Here Fqq = ∂ 2F/∂q2 and Fθkθk = ∂ 2F/∂θ 2
k . The equi-contour surface becomes elliptic and

gives two branches of solutions θ±
k (ω,q) = θk0 ±

√
Fqq/Fθkθk

√
a2 − (q−q0)2 to satisfy the

local dispersion relation. Here a2 = 2F0/Fqq = (q2 − q1)
2/4. The WKBJ solutions are given

by exp(−in
∫ q θ±

k dq). In this case, right and left travelling waves produces a standing wave if

the Bohr-Sommerfeld condition n
∫ q2

q1
(θ+

k −θ−
k )dq = 2π(N+1/2) is met. Changing integration

from dq to dφ by the transformation q−q0 = asinφ and let N = 0, we have,

q2 −q1 =
2√
n

(
Fθkθk

Fqq

)1/4

(14)
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We obtain slightly different formula compared with the equation (11) in [10].

nq(r) 	

θk,m	 θk,m+1	 θk,m+2	

m	 m+1	m+2	m-1	m-2	m-3	 m+3	

Δr	 θ=θ0	

φ	

θ	

R	

Z	(a)	 (b)	

Figure 1: (a) Radially overlapped ballooning eigenmode structure with phase shift θk and 1/e

full width of envelope. (b) Example of phase alignment in the flux coordinates with constant θ0.

In the flux coordinates, constant poloidal angle line is curved in (R,Z) plane and tilting due to

θ ′
k will be superposed on it.

Acknowledgement: The author acknowledge former director of JT-60, M. Azumi for useful

discussions.

References
[1] M. Kikuchi, M. Azumi, Frontier in Fusion Research II - Introduction to Modern Tokamak Physics, (Springer,

2015), Chapter 6.

[2] Y.C. Lee, J.W. Van Dam, Kinetic theory of ballooning instabilities, in Proc. Finite Beta Theory Workshop,

Varenna, 1977, p93.

[3] L.E. Zakharov, High-wave number MHD-mode stability in high-pressure tokamaks, in plasma physics and

controlled nuclear fusion research (Proc. 7th Int. Conf. Innsbruck, 1978) Vol 1(IAEA, Vienna, 1979) p689.

[4] J.W. Connor, R.J. Hastie, J.B. Taylor, Phys. Rev. Lett. 40, 396(1978).

[5] R.L. Dewar, M.S. Chance, A.H. Glasser, J.M. Green, E.A. Frieman, WKB theory for high-n modes in axisym-

metric toroidal plasmas, PPPL Report 1587(1979)

[6] R. L. Dewar, J. Manickam, R.C. Grimm, M.S. Chance, Nuclear Fusion 21, 493(1981).

[7] F. Zonca, L. Chen, Phys. Fluids B 5, 3668(1993)

[8] F. Romanelli, F. Zonca, Phys. Fluids B 5, 4081(1993)

[9] J.B. Taylor, Plasma Phys. Control. Fusion 35, 1063(1993)

[10] J.B. Taylor, H.R. Wilson, J.W. Connor, Plasma Phys. Control. Fusion 38, 243(1996)

[11] J.Y. Kim, Y. Kishimoto, M. Wakatani, T. Tajima, Phys. Plasmas 3, 3689(1996)

[12] Y. Kishimoto, T. Tajima, W. Horton, M.J. LeBrun, J.Y. Kim, Phys. Plasmas 3, 1289(1996)

[13] Y. Kishimoto, J.Y. Kim, W. Horton, T. Tajima, MJ LeBrun, H. Shirai, Plasma Phys. Control. Fusion 40,

A663(1998)

[14] R.D. Hazeltine, J.D. Meiss, Plasma Confinement, (Dover, New York, 2003)

43rd EPS Conference on Plasma Physics P4.051


