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Introduction

Understanding of two-dimensional structure of the toroidal drift waves is a long standing
subject in fusion research. I revisited this issue recently for writing an introductory book on
modern tokamak physics [1]. Lee-Van Dam[2] and Zakharov [3] assumed a radial translational
symmetry to derive a quasi-mode representation of the ballooning mode, while J. Connor de-
rived it based on the Fourier transformation [4]. Here I show a smooth way to connect these two
approaches including a phase shift 6; by use of §-function formula.

Two dimensional eigenmode structure is categorized into passing and trapped modes[5] and
the formula for radially overlaped mode envelope widths are discussed by Romanelli[8] and
Taylor[10] for the trapped mode and by Kim-Kishimoto[11] for the passing mode. I revisited
these formula and slightly modified result is obtained.

Poloidal harmonics expression from the Eikonal form

In the ballooning approximation k| <k in an axisymmetric tokamak, the eigenmode ¢(r, 6, {)
to satisfy double periodicity in (60, {) is given by the infinite summation of the Eikonal form
®(r,n,¢) = u(r,n)e™"% in the covering space 1 € (—oo, 4-00) using § = —n(a + o(r)) as

0(r,0,0)=e "¢ f u(r, 0 +27))e1O=0+2%)) where g(r /deq
oo

Here the coordinates (r,0, ) is a flux coordinates and 6(r) = ot)(r)/q'(r)[5], [6], @ = § —

¢0. Using the 9 function, an integral form is obtained.

0(r,0,0) =¢ "¢ Z dnu(r N+ 60)8(n — (0 — 6y +27j))emm 2)
j*—oo
o0
If we apply the delta function formula 27 )" &(x—27)) Z e ™ and setx =1 — 0 + O,
J=—eo m=-—co
we have:
e ey |
0(r,0,0) = e Z / (M + 6p)e i(ng—m)1 ,im(6—6p) (3)
m—=—oo
If we define ” = 1 + 6y, above equation is rewritten as,
o0 ! . PR .
(}” ) C —mC Z / ‘;_?ru(r, n/)el(nq—m)n e—mqﬂoeth 4)



43'Y EPS Conference on Plasma Physics P4.051

In this expression, we see ng —m is a fast varying radial variable conjugate to . Renaming
n’ to M1, we have following expression for the eigen function.
. +0° . .
0(r,0,0) =" Y. gu(rng—m)e "% )
m=—oo
Here, ¢o(r,ng —m) is given by the following radial Fourier integral.

+oo ] .
golrng—m) = [ Surm)elvamm ©®

—o0

We find that the phase shift term is not e % but is e="4% = ¢ ao O (na)
Bloch Angle and Radial Envelope Formula

The function ¢ (r,ng —m) represents a localized eigenfunction near the rational surface g(r,,) =
m/n having the translational symmetry in the radial direction ——, 71,7, Fips1,——. If we

pick up phase shifts for these rational surfaces (Ang = 1), we have,

[ eaya ~ ¥ 6i/n) Q)
nqo

J=nqo
The phase shift between adjacent rational surface is called the "Bloch angle" due to its simi-
larity to the solid state physics but changes radially. The Bloch angle is therefore 6; and not 6y
defined in (1) adopted from Hazeltine-Meiss [14]. If the @o(r,ng —m) is extremely peaked at
ng = m, we can approximate e~ 4% — ¢~ (o reach,
foo
9(r6.0)=¢"" Y @o(ring—m)e =) )
m=—oo
In this case, the phase angles of all poloidal harmonics becomes zero at 8 = 6 so that we can
argue 0y is a measure of poloidal angle where the mode elongation is purely radial as discussed
by Kishimoto [12] but may not be the tilting angle [13].
If we expand 6y (r) in Taylor series as 6k (r) = 6k(r) + 6 (rm)(r — rm) +——, we can assume
O (rm) is real if the mode amplitude is maximum at r = r,,,. However, the 6/(r,,) may have both

real and imaginary parts. For the imaginary part Im[6;], the phase shift term e~/ &%d("9) i,

exp [n/]m[@k]dq] =exp[—a(r— rm)z} , where @ = —Im[0}(rm)|ng (rm) /2 )

This o characterizes the radial full width Ar = 20~!/2

in [ Re[6k]

of ballooning mode peaked at r = ry,.
44 i3 expanded as,

(r— rm)2
2

For the real part Re[6y], the phase shift term e~

exp [—l[ek(rm)nq () (r — )+R€(9k(rm))nq (m) +——] (10)

So the Re(6,(ry)) is related to poloidal tilting of radially elongated mode structure.
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Local Dispersion Relation

The local dispersion relation may be given as F(®,q,6;) = 0, where ¢ is a radial coordi-
nate. Dewar[6] analyzed characteristics of dispersion relation and applied Bohr-Sommerfeld
condition for trapped and passing modes in general two dimensional eigenmode equation in
particular for the ideal MHD stability. Later, Taylor[9] discussed Bohr-Sommerfeld condition
for application to toroidal drift waves. Zonca-Chen [7] applied this technique in TAE analysis
(trapped mode) and Romanelli-Zonca [8] for ITG mode. Number of authors calculated the local
dispersion relations.
Envelope width for Passing Mode

If the local dispersion function F(w, g, 6;) is monotonic (dF /dq # 0, dF /9 6, # 0), we write
the dispersion relation by @ = w(r, 6;) = @,(r, 6;) + iw;(r, 6;) and the mode is passing mode
(or not trapped) in a sense of Dewar [5], the radial derivative of the local dispersion relation is
given by 9,0+ (dg, ®)6](r,,) = 0, which gives following expression for o.

o0 | ng (rm) B 0, nq'(ry)
39ka) 2 B 89kwl- 2

Here, the last equation is derived assuming that the mode frequency @ is dominated by the real

(X:Im[ (11)

oscillation so that d@/dr is also dominated by the real part. Addition of the Doppler-shifted
real frequency and a particular choice of growth rate ®; = ycos6; leads to Kim-Kishimoto
formula for the full width of radially overlapped envelope[13] using nq’ = kgs where s = rq’ /q

is the magnetic shear.

Ar—2 2Ysin6y (12)
kgsar((l)r + (L)f)

Envelope width for Trapped Mode
If the local dispersion function F(®,q, 6;) has extremal at (g, 6;) = (qo, 6xo), radial mode

width is given in a different form. We may expand in a quadratic form using Fp = —F (®, qo, Ox0)-

1
~Fo+ 3 [Fag(q = a0) + Fo,o,(6 — 610)°] =0 (13)

Here F,, = 0*F/dq* and Fg g, = 0°F/06?. The equi-contour surface becomes elliptic and

gives two branches of solutions 6 (®,q) = Ok & \/Fyq/Fo,6,1/a> — (¢ —qo)? to satisfy the
local dispersion relation. Here a? = 2Fy/F,, = (g2 — q1)*/4. The WKBJ solutions are given
by exp(—in [4 Okidq). In this case, right and left travelling waves produces a standing wave if
the Bohr-Sommerfeld condition n [? (6 — 6 )dg =2m(N +1/2) is met. Changing integration
from dgq to d ¢ by the transformation g — gg = asin@ and let N = 0, we have,

2 nggk)1/4
@—q=—= | =X (14)
Vn ( Fyy
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We obtain slightly different formula compared with the equation (11) in [10].

Figure 1: (a) Radially overlapped ballooning eigenmode structure with phase shift 6; and 1/e

full width of envelope. (b) Example of phase alignment in the flux coordinates with constant 6.

In the flux coordinates, constant poloidal angle line is curved in (R,Z) plane and tilting due to

6, will be superposed on it.
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