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1. Introduction. The task is related to evaluation of the sideways forces on the vacuum vessel 

wall in tokamaks [1–7]. Such forces up to 4 MN have been observed in experiments on Joint 

European Torus (JET) tokamak [8]. They led to significant displacement of the vessel in JET 

[1] and are expected to be an order of magnitude larger in ITER [8].   

In simulations with M3D code [3, 5], the maximal sideways force was found at 1w  , 

where   is the kink growth rate and w  is the resistive wall time. An analytical model was 

proposed in [3], but, when properly corrected [6], it yields a different result. Recently, the 

presence of such maximum at some   has been theoretically predicted in [7], but in general 

terms without precise indication of its position on the w  scale.  

Here we develop a model to find the sideways force on the wall as a function of w  for 

the helically deformed plasma separated from the conducting wall by a vacuum gap. Mostly 

the derivations are performed in cylindrical geometry within the thin-wall model that is 

widely used in the resistive wall mode (RWM) studies, see details and references in [9]. The 

approach is based on the results of [6], but now we additionally incorporate more harmonics 

of the kink perturbations than it was done in [2–6]. Also, in contrast to previous studies [1–6], 

here the condition [7] is explicitly used that the sideways force on plasma is much smaller 

than that on the wall. The derived expressions explicitly reveal the dependence of the wall 

force on w , which is in agreement with numerical results [3, 5] and general analytical 

predictions [7]. 

2. Formulation of the problem. The sideways force on the wall is defined by 
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Here B  is the magnetic field (subject to 0B  ), j B  is the current density, eX  is the 

unit vector along a fixed horizontal direction. The first integral is over the wall volume, and 

the second one is over its outer “ out ” and inner “ in ” sides of the toroidal wall.  
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With bBB  0 , where 0B  is the axisymmetric equilibrium field ( 0/0  tB ) and b  

is the time varying perturbation exp( )t , Eq. (1) and natural 0( ) 0BXF   give us 

out in

X X XF F F  ,                                                         (2)  
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with out   or in   denoting the proper wall surface.  

3. Calculations of the integrals. The tokamak toroidicity is accounted for by the use of 

cos sine e eX R    ,           cos sine e eR r                       (4) 

with   counted from the eX  direction. In the large-aspect ratio approximation 

0dS er wr R d d  , 0 0B er   and then with (4) the linear term in (3) is 
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The coordinates ),,( 0 Rzr   are quasi-cylindrical with 
02 R  the length of the equivalent 

torus so that   and   correspond to the poloidal and toroidal angles. The plasma with radius 

plr  and the wall with radius wr , thickness wd  and conductivity   are coaxial when 0b  . 

 The first term in (5) does not vanish if sin cosrb   . With b   in vacuum this 

requires 

1,1 1, 1sin( ) sin( )lin          .                                     (6) 

Such and only such choice also makes non-zero the contribution of the term 0B b   and 

nullifies the remaining term sin . Then Eq. (5) yields 
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where we disregard a small difference in 0B   at radial positions wr  and w wr d , the prime 

means the derivative with respect to r , 
0 0 0( )q rB R B   so that 2q r  outside the plasma.  

For the perturbations prescribed by (6), at 
0nr mR  equation 2 0   gives us  

1 1 1,
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with 
wx r r , 1,n

rb  is taken at the wall, 1 0   behind the wall and 

1 w      with   w w wr d                                               (9) 

in the plasma-wall gap [9]. For the magnetically thin wall, the amplitudes 1,n

rb  must be the 

same for the both regions. Here we assume real   (locked modes) as in simulations [3, 5]. 
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By using Eq. (8) we obtain for the expression in the brackets in (7): 

  1,1 1, 1 1,1

1 1... ( )[ (1 )] 2w r r w rr b b q q r b      .                             (10) 

4. The sideways force on the plasma. The asymmetric force on the plasma is  
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Here we extend the integration volume because the gap with 0j   does not affect the result.  

 Estimates [7] show that the disruption-induced Fp  is negligible compared to the wall 

force. With   

0in

XF                                                           (12) 

from (7) and (10) we obtain at the wall ( wr r )  
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This requires, in particular, that 1, 1 0rb   . Incorporation of 1, 1

rb   coupled with 1,1

rb  is the main 

difference of our analytical model from those in [2–4, 6] initially assuming 1, 1 0rb   . In the 

latter case, Eq. (13) is satisfied by either 1 ( 1) 0w wq q      or 1,1 0rb   and, consequently, 

0XF  . Then we have to consider quadratic effects in Eq. (3) and additional harmonics of the 

perturbation, but it can hardly produce a large force on the wall. 

5. The sideways force on the wall. Behind the wall, 1 0  . Then Eq. (7) with (10) gives 
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with 0B  , 1,1

rb  and 1, 1

rb   taken at the wall. Under the condition (13) this turns into  
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According to (8), at any intermediate point in the plasma-wall gap, pl wr r r  , we have  
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Therefore, Eq. (15) with (2) and (12) at 1 w   is equivalent to 
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with pl wr r  , rb  given at the plasma surface, 
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Equations (17)–(18) describe the sideways force on the wall as non-monotonically varying 

with   from 0XF   at 0   to 0XF   at w   with a maximum in-between at 

1/2
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6. Discussion. The position of this maximum 

weakly depends on plq . At 1.1/ plw rr  it falls 

into the range 0 4w   at any plq . Such low 

values of w  are in agreement with numerical 

results in [3, 5]. The function (18) is plotted in 

Fig. 1 using / 1.3w plr r   and 3plq  . Then Eq. 

(19) gives 2w  .  

In contrast to the single-mode analytical 

modelings [4, 6], the linear analysis presented 

here proves that, from the point of view of the sideways forces, the most dangerous must be 

slow RWMs. However, even the largest force must be tolerable. Because of the mutual 

cancellation of the contributions from two coupled modes, the resulting force (14) is about 

one order of magnitude smaller than that predicted by the single-mode models [2–4, 6]. 

Here we have proved that the sideways force associated with a kink mode must be 

maximal at (1)w O  . The demonstrated force dependence on w , not accounted for in [1, 

2, 4], is similar to the earlier findings in numerical calculations with M3D code [3, 5]. 

However, the force amplitude in our model cannot reach the level comparable to that in [3]. 

Maybe, this can be attributed to the fact that, in our model, the wall is separated from the 

plasma by a vacuum gap (no halo currents). We conclude that a search of a large sideways 

force should be done either at the next stages of disruptions or with realistic 3D wall models.  

[1] V. Riccardo, S. Walker, and P. Noll, Fusion Eng. Des. 47, 389 (2000).  

[2] L. E. Zakharov, Phys. Plasmas 15, 062507 (2008). 

[3] H. R. Strauss, R. Paccagnella, and J. Breslau, Phys. Plasmas 17, 082505 (2010). 

[4] L. E. Zakharov, S. A. Galkin, and S. N. Gerasimov, Phys. Plasmas 19, 055703 (2012). 

[5] H. R. Strauss, et. al., Nucl. Fusion 53, 073018 (2013). 

[6] D. V. Mironov and V. D. Pustovitov, Phys. Plasmas 22, 052502 (2015). 

[7] V. D. Pustovitov, Nucl. Fusion 55, 113032 (2015). 

[8] F. Romanelli, et. al., Fusion Eng. Design 86, 459 (2011). 

[9] V. D. Pustovitov, J. Plasma Phys. 81, 905810609 (2015). 

 
Fig. 1. Dependence of 

XF  on 
w  described by 

function ( )wf   given by (18). The calculation 

parameters are / 1.3w plr r   and 3plq  . 
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