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A potential well containing trapped particles as well as dot sources and/or sinks for these 

particles is considered. The kinetic boundary-value problem to be solved is to find the 

stationary velocity distribution function (VDF) of the trapped particles, assuming the presence 

of a relaxation process driving any non-equilibrium VDF towards the equilibrium one. This 

problem is solved on the basis of the authors’ previous expertise on a variety of pertinent 

kinetic boundary-value problems [1-3]. 

The general goal of this work and recent similar efforts by the authors [4] is to introduce 

a new, efficient methodology of solving kinetic boundary–value problems with localized 

particle sources and sinks. The novelty and efficiency of the method can be summarized as 

follows: (i) The relevant VDFs are calculated via trajectory integration of the underlying 

kinetic equations. This allows for (ii) inclusion of boundary conditions in a natural way and 

(iii) the possibility of obtaining piecewise analytic solutions in collisionless regions. (iv) The 

latter can be matched via the interface conditions to yield the global VDF. 

In free space, the particles’ VDF ( ),h r v  is assumed to satisfy the collisionless kinetic 

equation (Vlasov equation) 

0
Dh h dU h

v
Dt r dr v

∂ ∂= ⋅ − ⋅ =
∂ ∂

.         (1) 

The entrance boundary conditions at the left- and right-hand boundaries are prescribed as 
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respectively, where [ ]1 2,r R R∈  is position, ( ),v ∈ −∞ +∞  is velocity, 1R and 2R are the left- 

and right-hand boundaries (“electrodes”) of the region considered, 1g and 2g are any non-

negative functions, and the “potential energy”  U  is defined as ( ) ( )U r ZeV r m= , with  

( )V r  the electrostatic potential, e  the positive elementary charge, and m and Z  the single-

particle mass and charge number, respectively. As is well known, the collisionless single-
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particle trajectories are curves of constant total particle energy,  ( ) ( )21
2

, constW r v v U r= + = , 

the  “Lagrangian” time derivative D dU
v

Dt r dr v

∂ ∂= ⋅ − ⋅
∂ ∂

 is the rate of change as “seen” by a 

particle moving along its collisionless trajectory, and the Vlasov equation (1) states that the 

VDF h  is constant along any collisionless trajectory. 

Hence, the collisionless trajectories generally play a crucial role in formulating and 

solving kinetic boundary-value problems, so that it is extremely important and helpful to 

familiarize oneself with their topology in ( ),r v  phase space for any particular case. Here we 

point out that the “separating trajectory” (“separatrix”) between trapped- and untrapped- 

(transiting-) particle trajectories corresponds to the energy ( ) *
sW r U= , hence has the form 

( ) ( )s sv r v r= ± ( )*2 U U r = ± −  ( )sv r±=  and clearly exhibits an upper (+) and a lower (-) 

branch. The phase-space regions above the upper and below the lower branch are occupied by 

the trajectories entering at1R  and 2R , respectively ( ( ) *,W r v U> ), while the region between 

the two branches is occupied by the trapped trajectories/particles ( ( ) *,W r v U< ). Let us 

denote the entrance velocities of trajectories entering at 1,2R  by 1,2w , respectively, with 1 0w >  

and 2 0w < . Upon proper combination of these elements we find, in the absence of sources, 

sinks and trapped particles, the general solution ( ),h r v  of the kinetic boundary-value 

problem (1), (2) in the form  

       ( ) ( )2 2
1 1 1 2

1 1
2 2

h H g w H g w+ −= ⋅ + ,                        (3) 

where the Heaviside unit-step functions ( ) ( )( ), sH r v H v v r+ = −  and ( ),H r v−   

( )( )sH v v r= − −  pick out the phase-space regions above the upper and below the lower 

separatrix branch, respectively, ( ) ( )2 *
1,2 , 2w r v v U r U = ± + −  , and 2

1,2
1
2

w  

( )2 *1
2

v U r U= + − . For later use, we here also introduce the Heaviside function picking out 

the phase-space region for trapped trajectories/particles, namely ( ) ( )( ),tr sH r v H v r v= −   

( )( )* r,H U W v= −     ( )( )* 21
2

,H U U r v v= − − . 

In the subsequent “stages” of our work we will insert into the “diode” configuration just 

considered dot sources and sinks of various kinds, so that we are bound to get faced with 

kinetic boundary-value problems of increasing complexity and we are well advised to choose 
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our way of proceeding quite judiciously. To be specific, we choose to proceed as follows: 

While situations of significantly higher complexity can be tackled in the future, we here 

restrict ourselves, as is appropriate for the present “first stage”, to the following, relatively 

simple exemplary problem for which the physics is obvious.  

Let us consider a potential well in which there is only a dot source (Fig. 1) or only a dot 

sink (Fig. 2) for the particles. It is obvious that in the first case, where particles only enter the 

potential well but do not leave it, the VDF should tend to infinity, while in the second case, 

when particles are only removed but are not replenished, the VDF should tend to zero. 

In Figs. 1 and 2, the dot source and sink are placed at r t= . The “source VDF” 

indicated in Fig. 1 is chosen as  ( ) ( )21
2

, ,t trg g v t H t v= ⋅ , which because of the function trH  

means that the source emits only trapped particles. In Fig. 2, on the other hand, it is assumed 

that on passage of the particles through the dot sink the VDF ( ),h r v  is modified according to 

h hα→ ⋅ , with the “sink factor” 1α < . 

 

 

 

  

 

 

 
 

                              Fig. 1                                                                                           Fig. 2  

With the source present at r = t (Fig. 1) there are two regions in each of which we can 

formulate a kinetic boundary-value problem for the Vlasov equation, namely Region 1 

( [ ]1,r R t∈ ) and Region 2  ( [ ]2,r t R∈ ), for which we choose the boundary conditions 

( )1 1, 0 0h R v > = ,            ( ) ( ) ( )1 2t, 0 th v g h t H v< = + ⋅ −   ,      (4a) 

( ) ( ) ( )2 1t, 0 th v g h t H v> = + ⋅   ,       ( )2 2, 0 0h R v < = .                      (4b) 

Let us solve this problem by means of an iterative process as follows. In the 1st iteration step, 

we assume that Regions 1 and 2 are isolated from each other. Then the boundary conditions 

(4a,b) at the point r t=  assume  the form ( ) ( ) ( )1
11 t, 0 th v g H v< = ⋅ −  and ( ) ( )1

2 t, 0h v >  

( )tg H v= ⋅ , respectively. The solution in Region 1 (see Fig. 1 and expressions (3)) then reads 
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( ) ( ) ( ) ( )1 *
1 1 ,th H g W U t H U Wλ= − ⋅ − ⋅ −  which after some intermediate calculations finally 

yields ( ) ( ) ( )1 *
1 ,th g W U t H U W= − ⋅ − . Similarly, starting out from (4b) the solution of the 

collisionless kinetic boundary-value problem for Region 2 (see Fig. 1. and expressions (3)) is 

found as ( ) ( ) ( )1 *
2 ,th g W U t H U W= − ⋅ − . 

In the 2nd iteration step and the subsequent iteration steps it is assumed that particles 

can freely pass from Region 1 into Region 2 and vice versa. Hence, taking into account the  

expressions for ( )1
1h  and  ( )1

2h , the boundary conditions (4a,b) at r = t  become 

( ) ( )2
1 1, 0 0h R v > = , ( ) ( ) ( )2

1 t, 0 2 th v g H v< = ⋅ ⋅ −  and ( ) ( ) ( )2
2 t, 0 2 th v g H v> = ⋅ ⋅ ,   

( ) ( )2
2 2, 0 0h R v < = , respectively. Calculations similar to those of the 1st iteration step lead to 

the following unified forms of the VDFs in Regions 1 and 2: 

( ) ( ) ( )2 *
1 2 ,th g W U t H U W= ⋅ − ⋅ − . 

Our further calculations performed under this scheme have shown that for the k-th 

iteration step the expressions found for the functions ( )
1

kh  and  ( )
2

kh  are of the form           

( ) ( ) ( )*
1 ,k

th k g W U t H U W= ⋅ − ⋅ −   and  ( ) ( ) ( )*
2 ,k

th k g W U t H U W= ⋅ − ⋅ − , respectively, 

which confirms our expectation that for k → ∞  both ( )
1

kh → ∞  and ( )
2

kh → ∞ .  

In the sink case (Fig. 2) it is assumed that the entire potential well is “filled” with 

trapped particles with the VDF ( ) ( ) ( )*, ,tG r v g W U t H U W= − ⋅ − . Calculations similar to 

those for the source case have shown that for the k-th iteration step the functions ( )
1

kh  and ( )
2

kh  

are of the form ( ) ( ) ( )*
1 ,k k

th g W U t H U Wα= ⋅ − ⋅ −  and ( ) ( ) ( )*
2 ,k k

th g W U t H U Wα= ⋅ − ⋅ − , 

respectively, so that because of 1α <  both tend to zero as k → ∞ , which is in line with our 

expectations. 

Conclusion. In view of the fact that in both the source and the sink case the asymptotic 

results are obviously correct, we conclude that our new method of solving kinetic boundary-

value problems with sources and sinks has passed this “test” successfully. 
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