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Abstract

We study a fully classical covariant relativistic plasma theory including the effect of

the spin in the radiation reaction effects of charged particles inmersed in inhomogeneous

electromagnetic fields. We include the effect of the radiation reaction due to dynamical spin.

We calculate the contribution of the spin-electromagnetic coupling in the radiation reaction

for an accelerated particle, in the same fashion than classical radiation reaction owing to its

charge. We also obtain the contribution of the radiation reaction to the evolution of the spin

dynamics.

The dynamics of particles (or plasmas) under the influence of very strong electromagnetic

fields in extremely high energy requires an appropriated description that includes a variety of

relativistic phenomena. Recently, it has been shown [1] that the spin forces overcome the radia-

tion reaction effects in high-energy plasmas. In this work we generalize these results to include

the effect of the radiation reaction due to dynamical spin. We use the Tamm-Good equations

[2, 3] for classical spinning particles. These equations are a generalization of the Bargmann-

Michel-Telegdi equations [4]. As a result, the complete description of the system involves not

only the motion of the charged particle but also the evolution of its spin, considering that the

radiation reaction forces on the particle are modified by the spin degrees of freedom.

The covariant equations of motion of a particle with mass m, charge q and with a spin mag-

netic moment µ = qh̄/(mc) are [2, 3]

aµ ≡ dvµ

dτ
=

q
mc

Fµνvν +
µ

2m
DµFαβ

Παβ , (1)

dΠαν

dτ
=

q
mc

(
Fα

ρΠ
ρν −Fν

ρΠ
ρα
)
− µ

2mc2

(
vα

Π
νβ − vν

Π
αβ

)
Dβ Fρσ

Πρσ . (2)

where vµ is the four-velocity of the particle, Πµν is the antisymmetric spin tensor, Fαβ is the

electromagnetic field tensor, and the operator

Dµ = ∂
µ +

vµvβ

c2 ∂β ≡ ζ
µβ

∂β , ζ
µβ = δ

µβ +
vµvβ

c2 . (3)
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These equations do not include the effect of radiation reaction. The degree of freedom of the

dynamical variables are constrained vµvµ =−c2, vµΠµν = 0, and ΠµνΠµν = 2 (due to vµζ µβ ≡

0).

Prescription to incorporate radiation reaction

For a spinless particle, the radiation reaction force FR
αν is included in the momentum equa-

tion under the prescription Fαν → Fαν +FR
αν , where FR

αν is calculated a priori [5]. In order

to follow the same prescription, we re-write the previous Eqs. (1) and (2) as

dvα

dτ
=

q
mc

F ανvν , vα

dΠαν

dτ
=

q
mc

Fρσ vσ
Π

νρ , (4)

where F αν = Fαν +(µc/q)(DαF∗βνsβ −DνF∗βαsβ ) represents the total antisymmetric force

tensor, and F∗βν is the dual of Fβν . To include now the radiation reaction force we perform

F αν →F αν +FR
αν , where FR

αν is the total radiation reaction force, including both charge-

coupling and spin-coupling of the particle with the electromagnetic field. The final equations,

including the radiation reaction effects, will read

dvα

dτ
=

q
mc

F ανvν +
q

mc
FR

ανvν , vα

dΠαν

dτ
=

q
mc

Fρσ vσ
Π

νρ +
q

mc
FRρσ vσ

Π
νρ . (5)

Radiation reaction forces

Now we can calculate the radiation reaction forces following standard procedures [5]. The

radiation field is FR
µν = (1/2)(Fµν

ret −Fµν

adv), where the retarded and advanced fields are given by

the potentials Fµν

ret,adv = ∂ µAν
ret,adv− ∂ νAµ

ret,adv. The spin contribution to the radiation reaction

is included by expressing the potential as the contribution of two sources Aν
ret,adv = A(e)ν

ret,adv+

A(µ)ν
ret,adv, where A(e)ν

ret,adv is the usual potential, due to the charge, and A(µ)ν
ret,adv is the

contribution due to the effective charge of the spin current. Therefore we finally have FR
µν =

FR(e)
µν +FR(µ)

µν .

The retarded and advanced potentials [5] due to the current density of the particle is A(e)µ

ret,adv =

qvµ/(cρret,adv) with ρret,adv =∓vµRµ

ret,adv/c, and Rµ = xµ−zµ , where ρ represents the distance

from the retarded (advanced) position zµ of the charged particle to the field point xµ [5]. Thus,

F(e)µν

ret,adv =±(2q/ρret,advc2)dτ(v[µRν ]
ret,adv/ρret,adv), where a[µbν ]≡ (1/2)(aµbν−aνbµ). Cal-

culating the strength of the field in the neighborhood of the world line of the particle [5], we

find the radiation reaction field owing to the electromagnetic radiation emitted by the charge

FR(e)
µν =− 2q

3c4 (ȧ
µvν − ȧνvµ) . (6)

This is the classical radiation reaction that leads to the Lorentz-Abraham-Dirac (LAD) equation.
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On the other hand, to calculate FR(µ), we invoke the spin contributions to the retarded

and advanced potentials [6, 7] A(µ)α
ret,adv = (µ/4π)∂µ(Π

αµ/ρret,adv) =∓(µ/4πcρ)Zµ , where

Zµ = dτ(Π
µαRα/ρ). Thereby we can find

F(µ)
µν

ret,adv =
µ

2πc2ρ

d
dτ

(
R[µZν ]

ρ

)
, (7)

where we have used ∂ µZν = Żν∂µτ . Expanding the quantities in the vicinity the world line of

the particle, we find the radiation reaction field due to the spin

FR(µ)
µν =− µ

2πc4

(
v[µ Z̈ν ]+a[µ Żν ]+

1
3

ȧ[µZν ]− a2

3
v[µZν ]

)
, (8)

where a2 = aµaµ , and the Z-terms in the right-hand side are evaluated in the limit τ,ρ→ 0, such

that Zν =−(1/c)vαΠ̇να , Żν =−(1/c)dτ

(
vαΠ̇να

)
, and Z̈ν =−(3/2c)aαΠ̈να−(1/c)ȧαΠ̇να−

(a2/c3)vαΠ̇να .

Total radiation reaction force

A cosistent dynamics can be achieved following the prescription of Rohrlich [8, 9, 10], which

consists in computing the right-hand sides of Zν , Żν and Z̈ν , but omiting the radiation reac-

tion force. The total force (4) on the charged spinning particle is (F µν +Fµν

R )vν = F µνvν +

FR(e)µνvν +FR(µ)
µνvν . Recalling that aµvµ = 0, Zµvµ = 0 = Zµaµ , and aα Żα =−ȧαZα , we

find that Eq. (1) becomes

aµ =
q

mc
Fµνvν +

µ

2m
DµFαβ

Παβ +
2q2

3mc3 ζ
µ

ν ȧν − qµ

4πmc3

(
Z̈µ +

1
2c2 vµ ȧαZα

)
. (9)

Consistently, the spin tensor evolution equation becomes

vα

dΠαν

dτ
=

q
mc

Fρσ vσ
Π

νρ +
µ

2m
DρFαβ

Παβ Π
νρ +

2q2

3mc3 ζρσ ȧσ
Π

νρ

− qµ

4πmc3

(
Z̈ρ +

1
2c2 vρ ȧαZα

)
Π

νρ . (10)

The dynamical system composed of Eqs. (9) and (10) generalizes the radiation reaction force

presented in Ref. [5] to include the effects of particle spin. Note that Eqs. (9) and (10) are exact.

Electromagnetic wave

Consider a simple electromagnetic wave in a plasma and let us study the effect of radiation

reaction of the constituents in its propagation [11]. Let assume that the plasma is cold so the

plasma fluid dynamics can be described by the equation

v̇µ =
q

mc
Fµνvν +

µ

2m
DµFαβ

Παβ +
2q3

3m2c4 ζ
µ

ν

(
Ḟναvα +

q
mc

FναFαβ vβ

)
+

q3µ

3m3c4 ζ
µ

νFναDαFγδ
Πγδ +

q3µ

3m3c4 ζ
µ

νDνFαβ F[αρΠ
ρ

β ] . (11)
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Here we have approximated the momentum equation to its first order in µ and consider that

the radiation reaction effects are small. For sake of simplicity let us assume that the particle

spin is constant and aligned with a background magnetic field. So, we can neglect the dynam-

ical spin equation. We study a small amplitude wave propagating in the z-direction, whereas

the perturbed electric E and magnetic fields B are in the x and y-directions respectively. The

background magnetic field B0 is also in the y-direction, so the spin becomes relevant in this

configuration. Thus, the plasma perturbations oscillates in the x-direction as

vx =
iqE
ωm

[
1− i

2q2ω

3mc3

(
1+

µB0k2

mω2

)]
, (12)

where ω and k are the frequency and wave-vector of the electromagnetic wave. The radiation

reaction effects (proportional to q2/mc3 = α h̄/mc2, where α is the fine-structure constant) ap-

pear correcing the velocities. Using the Maxwell equations, we can find the dispersion relation

of the wave in the limit where the radiation reaction effects are small. In this case the dispersion

relation is

ω ≈
√

ω2
p + c2k2− i

2q2ω2
p

3mc3

[
1+
(

µB0

mc2

)
c2k2

ω2
p + c2k2

]
, (13)

where ωp is the plasma frequency. Thus, we can see that the radiation reaction introduces a

damping to the wave. The spin radiation reaction effects (proportional to µ) enhances this be-

havior, and the can be dominant in the strong magnetized limit. The new effects become relevant

near the Schwinger limit for the electromagnetic field, establishing that this effects could be rel-

evant on extreme astrophysical environments.
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