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Through classical trajectory simulation, the possibility that antihydrogen can be synthesized
via three body recombination involving magnetobound protonium is studied. It has been previ-
ously reported that proton-antiproton collisions can result in a correlated drift of the particles
perpendicular to a magnetic field. While the two particles are in their correlated drift, they are
referred to as a magnetobound protonium system. Possible three body recombination resulting
in bound state antihydrogen is studied when a magnetobound protonium system encounters a
positron. The simulation incorporates a uniform magnetic field. A visual search and an energy
analysis was done in an attempt to find parameters for which the positron is captured into a
bound state with an antiproton, resulting in the formation of antihydrogen.

Recently, simulations have shown that within a low temperature plasma containing protons
and antiprotons, binary collisons invloving proton-antiproton pairs can cause them to become
bound temporarily and experience giant cross-magnetic field drifts [1, 2]. These particle pairs
have been referred to as being in a magnetobound state, which could serve as a useful intermedi-
ate step in the production of neutral antimatter. Magnetobound states occur in low temperatures
and strong magnetic fields such as those found inside Penning traps that produce antihydrogen.
The possibility of three body recombination resulting in bound state antihydrogen is studied
when a magnetobound protonium system encounters a positron.

The interactions between particles throughout the simulation are treated classically. Coulomb’s
law states that the electric force on the proton (particle 1) by the antiproton (particle 2) is given
by Foninye = keqigariz/ rfz. Here, k. = 1/(4mgp), where g is the permittivity of free space, is
the Coulomb force constant, g; and ¢, are the charges of the proton and antiproton, rj; = |ryz| is
the distance between particles, and ryp = r; — r, is the separation vector between the particles.
Similarly, the rest of the electric forces acting on the proton, antiproton, and positron (particle
3) are found to be Fou1py3 = keq1q313/ 135, Fonabyt = keq1q2r21/731 Fonobys = keq2q3r23/135
Fonspy1 = keqiq3rar/ rg 1> and Fou3p00 = keqogarsy/ rgz. The magnetic force acting on the proton
18 Fonipyg = krq1B(vi =y xj) where (ijﬁ) are unit vectors in a Cartesian coordinate system,
Vixs V1y» V1 are the velocity components of the proton,k;, = 1 is the Lorentz force constant in
SI units, g; is the charge of the proton, and B is the magnitude of a uniform magnetic field

paralled to the z-axis. For the antiproton, F 05,8 = k1 q2B (voyi— v2xj ), where voy, voy, Vo, are its
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velocity components, and g; is its charge. Lastly, for the positron, F 3,8 = kr.g3B(v3,i — V3xj),
where v3y, v3y, v3; are its velocity components, and g3 is its charge. By Newton’s second law,
the motion of the proton, antiproton, and postitron is governed by XF = ma. For the proton,
Fontby2 +Fonibys +Fonipyp = miay, where my is the mass of the proton and a; is its acceleration.
For the antiproton, Fyu0py1 + Fonopy3 + Fonopyp = moaz, where my is the mass of the antiproton
and aj is its acceleration. For the positron, ¥y,3py1 + Fonzpy2 + Fonspyp = m3zasz, where mj is the
mass of the positron and as is its acceeration. The position and velocity of the particles are func-
tions of time that are written as r;(t) = x;(t )i+ y;(t)j +zi()k, and ¥i(t) = xi(t )i+ yi(1)j + 2i(0 k.

Let
chin
Feij = 2 2 21\3/2°
(bei(2) = xj ()] + [yi(0) = y; (O] + [z:(2) = 2;(1)]?)
where the indices i and j correspond to the proton (particle 1), antiproton (particle 2), and

)

positron (particle 3). Then the equations of motion for the proton are

Feialxi (1) = xa ()] + Feiz [x1 (1) — x3(2)] + keBguy' (1) = myx (1) 2)
Feia[yi(t) —y2(0)] + Feislyi (t) — y3(1)] — ke Bqixy (t) = myyi (1) 3)
Feiazi (1) — za(t)] + Feislzi () — z3(1)] = mi 2y (1), 4

The equations of the antiproton are

Feralxi (1) —xa(2)] + Feos[xa (1) — x3(1)] + kL Bgayy (1) = mox; (t) )
Feia[yi(t) —y2(0)] + Feaslya (t) — y3(1)] — ki Bgaxs (t) = mays (1) (6)
Feialzi(t) — z2(0)] + Feaslza (1) — 23(1)] = mazy (). (7

The equations of motion of the positron are

Feiz[xi(t) — x3(t)] + Feaslxa (1) — x3(2)] + ke Bgsy3 (1) = m3x; (1) (®)
Feus[yi(t) —y3(0)] + Fezs[ys(t) — y3(t)] — keBqsxs (1) = m3y5 (1) )
Feislzi(t) — z3(0)] + Feas[z2(t) — z3(t)] = m3z5 (1). (10)

Initially, the proton and antiproton are treated as traveling in opposite directions towards each
other from an infinite distance, while the positron is at an infinite distance from both the pro-
tonium system. At these distances the electric potential energy is zero. Conservation of energy

requires

1 2 2 2 1 2 2 2 1 2 2 2
Kloo +K200 +K300 = Eml (Vxlo + vle -+ vzl()) + —~my (szo + Vyzo + szo) -+ —ms3 (Vx30 -+ Vy3() + VZ30)

2 2
k k k
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where vy, Vyio, and vy are the initial velocity components of the particles.



43'Y EPS Conference on Plasma Physics P4.112

The kinetic energies at infinite distances of separation p

of the proton, antiproton, and positron are Kje, Kpe, & (82, 0, Zb/2)
and Kj.. respectively, and r;jo is the initial separation
between particles. For this simulation, vyjg = vy = ) : /{_;.,5 !
Vy10 = V320 = 0, Kjoo = Kpoo = K300 = Koo, mj =mp =m, < o

and v;10 = —v;0. The initial positions of the particle
are shown in (Fig. 1). The parameter b is the impact

. - . . -b/2, 0, -(bi2
parameter, (b is the inital axial separation between the (02,0, <b2)

ol

proton and the antiproton, and J is the distance be- 2
tween the origin and the positron on the y-axis. By
simplifying and rewriting Eq.(11), the initial nonzero  Figure 1: Initial positions of particles

velocities of the proton and antiproton at the start of

2K k
V210,220 = i\/ S AL (12)

m  mby/1+ (2

The parameters used in the simulation are B = 17 T and K. = 11 x, where «

the simulation are

has the value of Boltzmann’s constant in SI units with units of energy, and the im-

pact parameter b = 1.65r.. The cyclotron radius r. is defined as \/ 2K.m/ (k2 B2g?).

The trajectories of the particles were found by solving .,
their equations of motion numerically and varying the pa- 7
rameters. Due to the chaotic behavior of the system of 10}
particles there was no specific range of § and { values
that would guarantee capture.It appeared that the motion
of the positron did not stay correlated with that of the pro-

tonium system long enough to ensure capture. The tra-

jectories of the particles projected onto the yz—plane are

shown in (Fig. 2). The graph is normalized by r.. The fig- 7
ure shows that the positron does interact with the magne-
i ) ) Figure 2: Trajectory on yz-plane

tobound system and orbits around it, but does not remain

bounded to the antiproton. While the magnetobound protonium system experienced a larger
cross-magnetic field drift distance than the positronium system, it seemed to be more chal-
langing for the antiproton to capture the positron. Further studies on this phenomenon can be
made by varying the parameters mentioned above in smaller increments in the efforts to find a

successful capturing of the positron by the antiproton.
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In addition to a visual analysis of the three par-
ticle system, (Fig. 3) shows the change in energy
of the system throughout the simulation. If capture
occured, the kinetic and potential energy would sta-
balize to a constant value, which does not occur
for a long enough period of time in this simula-
tion. Successful trials would show the proton carry-
ing away the excess energy from the system, which
would then allow the remaining particles to form
antihydrogen.
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Figure 3: Energy of the system.
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