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Through classical trajectory simulation, the possibility that antihydrogen can be synthesized

via three body recombination involving magnetobound protonium is studied. It has been previ-

ously reported that proton-antiproton collisions can result in a correlated drift of the particles

perpendicular to a magnetic field. While the two particles are in their correlated drift, they are

referred to as a magnetobound protonium system. Possible three body recombination resulting

in bound state antihydrogen is studied when a magnetobound protonium system encounters a

positron. The simulation incorporates a uniform magnetic field. A visual search and an energy

analysis was done in an attempt to find parameters for which the positron is captured into a

bound state with an antiproton, resulting in the formation of antihydrogen.

Recently, simulations have shown that within a low temperature plasma containing protons

and antiprotons, binary collisons invloving proton-antiproton pairs can cause them to become

bound temporarily and experience giant cross-magnetic field drifts [1, 2]. These particle pairs

have been referred to as being in a magnetobound state, which could serve as a useful intermedi-

ate step in the production of neutral antimatter. Magnetobound states occur in low temperatures

and strong magnetic fields such as those found inside Penning traps that produce antihydrogen.

The possibility of three body recombination resulting in bound state antihydrogen is studied

when a magnetobound protonium system encounters a positron.

The interactions between particles throughout the simulation are treated classically. Coulomb’s

law states that the electric force on the proton (particle 1) by the antiproton (particle 2) is given

by Fon1by2 = kcq1q2r12/r3
12. Here, kc = 1/(4πε0), where ε0 is the permittivity of free space, is

the Coulomb force constant, q1 and q2 are the charges of the proton and antiproton, r12 = |r12| is

the distance between particles, and r12 = r1−r2, is the separation vector between the particles.

Similarly, the rest of the electric forces acting on the proton, antiproton, and positron (particle

3) are found to be Fon1by3 = kcq1q3r13/r3
13, Fon2by1 = kcq1q2r21/r3

21, Fon2by3 = kcq2q3r23/r3
23,

Fon3by1 = kcq1q3r31/r3
31, and Fon3by2 = kcq2q3r32/r3

32. The magnetic force acting on the proton

is Fon1byB = kLq1B(v1yı̂− v1xĵ), where (ı̂,ĵ,k̂) are unit vectors in a Cartesian coordinate system,

v1x, v1y, v1z are the velocity components of the proton,kL = 1 is the Lorentz force constant in

SI units, q1 is the charge of the proton, and B is the magnitude of a uniform magnetic field

paralled to the z-axis. For the antiproton, Fon2byB = kLq2B(v2yı̂−v2xĵ), where v2x, v2y, v2z are its
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velocity components, and q2 is its charge. Lastly, for the positron, Fon3byB = kLq3B(v3yı̂−v3xĵ),

where v3x, v3y, v3z are its velocity components, and q3 is its charge. By Newton’s second law,

the motion of the proton, antiproton, and postitron is governed by ΣF = ma. For the proton,

Fon1by2+Fon1by3+Fon1byB =m1a1, where m1 is the mass of the proton and a1 is its acceleration.

For the antiproton, Fon2by1 +Fon2by3 +Fon2byB = m2a2, where m2 is the mass of the antiproton

and a2 is its acceleration. For the positron, Fon3by1 +Fon3by2 +Fon3byB = m3a3, where m3 is the

mass of the positron and a3 is its acceeration. The position and velocity of the particles are func-

tions of time that are written as ri(t) = xi(t)ı̂+yi(t)ĵ+ zi(t)k̂, and r′i(t) = x′i(t)ı̂+y′i(t)ĵ+ z′i(t)k̂.

Let

FCi j =
kcqiq j

([xi(t)− x j(t)]2 +[yi(t)− y j(t)]2 +[zi(t)− z j(t)]2)3/2 , (1)

where the indices i and j correspond to the proton (particle 1), antiproton (particle 2), and

positron (particle 3). Then the equations of motion for the proton are

FC12[x1(t)− x2(t)]+FC13[x1(t)− x3(t)]+ kLBq1y′1(t) = m1x′′1(t) (2)

FC12[y1(t)− y2(t)]+FC13[y1(t)− y3(t)]− kLBq1x′1(t) = m1y′′1(t) (3)

FC12[z1(t)− z2(t)]+FC13[z1(t)− z3(t)] = m1z′′1(t). (4)

The equations of the antiproton are

FC12[x1(t)− x2(t)]+FC23[x2(t)− x3(t)]+ kLBq2y′2(t) = m2x′′2(t) (5)

FC12[y1(t)− y2(t)]+FC23[y2(t)− y3(t)]− kLBq2x′2(t) = m2y′′2(t) (6)

FC12[z1(t)− z2(t)]+FC23[z2(t)− z3(t)] = m2z′′2(t). (7)

The equations of motion of the positron are

FC13[x1(t)− x3(t)]+FC23[x2(t)− x3(t)]+ kLBq3y′3(t) = m3x′′3(t) (8)

FC13[y1(t)− y3(t)]+FC33[y3(t)− y3(t)]− kLBq3x′3(t) = m3y′′3(t) (9)

FC13[z1(t)− z3(t)]+FC23[z2(t)− z3(t)] = m3z′′3(t). (10)

Initially, the proton and antiproton are treated as traveling in opposite directions towards each

other from an infinite distance, while the positron is at an infinite distance from both the pro-

tonium system. At these distances the electric potential energy is zero. Conservation of energy

requires

K1∞+K2∞+K3∞ =
1
2

m1
(
v2

x10 + v2
y10 + v2

z10
)
+

1
2

m2
(
v2

x20 + v2
y20 + v2
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)
+

1
2

m3
(
v2
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)

+
kcq1q2

r120
+

kcq1q3

r130
+

kcq3q2

r230
, (11)

where vxi0, vyi0, and vzi0 are the initial velocity components of the particles.
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Figure 1: Initial positions of particles

The kinetic energies at infinite distances of separation

of the proton, antiproton, and positron are K1∞, K2∞,

and K3∞ respectively, and ri j0 is the initial separation

between particles. For this simulation, vx10 = vx20 =

vy10 = vy20 = 0, K1∞ =K2∞ =K3∞ =K∞, m1 =m2 =m,

and vz10 = −vz20. The initial positions of the particle

are shown in (Fig. 1). The parameter b is the impact

parameter, ζ b is the inital axial separation between the

proton and the antiproton, and δ is the distance be-

tween the origin and the positron on the y-axis. By

simplifying and rewriting Eq.(11), the initial nonzero

velocities of the proton and antiproton at the start of

the simulation are

vz10,z20 =±
√

2K∞

m
− kcq1q2

mb
√

1+ζ 2
. (12)

The parameters used in the simulation are B = 17 T and K∞ = 11 κ , where κ

has the value of Boltzmann’s constant in SI units with units of energy, and the im-

pact parameter b = 1.65rc. The cyclotron radius rc is defined as
√

2K∞m/(k2
LB2q2).
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Figure 2: Trajectory on yz-plane

The trajectories of the particles were found by solving

their equations of motion numerically and varying the pa-

rameters. Due to the chaotic behavior of the system of

particles there was no specific range of δ and ζ values

that would guarantee capture.It appeared that the motion

of the positron did not stay correlated with that of the pro-

tonium system long enough to ensure capture. The tra-

jectories of the particles projected onto the yz−plane are

shown in (Fig. 2). The graph is normalized by rc. The fig-

ure shows that the positron does interact with the magne-

tobound system and orbits around it, but does not remain

bounded to the antiproton. While the magnetobound protonium system experienced a larger

cross-magnetic field drift distance than the positronium system, it seemed to be more chal-

langing for the antiproton to capture the positron. Further studies on this phenomenon can be

made by varying the parameters mentioned above in smaller increments in the efforts to find a

successful capturing of the positron by the antiproton.
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Figure 3: Energy of the system.

In addition to a visual analysis of the three par-

ticle system, (Fig. 3) shows the change in energy

of the system throughout the simulation. If capture

occured, the kinetic and potential energy would sta-

balize to a constant value, which does not occur

for a long enough period of time in this simula-

tion. Successful trials would show the proton carry-

ing away the excess energy from the system, which

would then allow the remaining particles to form

antihydrogen.
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