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I. Introduction

In laser-plasma interaction, magnetic fields play a crucial role as they could affect the
transport processes and the energy absorption of the electromagnetic (ELM) by electrons. It
has been shown [1] that anisotropy in the average kinetic energy of electrons (temperature
anisotropy) provides a free energy that can drive quasi-static electromagnetic (QSELM)
instabilities. The temperature anisotropy can be produced by the laser energy deposition [2]
via inverse bremsstrahlung absorption mechanism. In current and near future experiments of
inertial confinement fusion [3], the plasma temperature can reach values of about 10 —
15 keV which corresponds to mildly relativistic plasmas. In this work, we presented an
analysis of the QSELM instability in homogeneous relativistic plasmas heated by ELM
waves. The relativistic effects are due to the high electron thermal energy which is no longer
negligible with respect to the electron rest energy. In Section Il we presented the Kinetic
model used in this work. Section Il is devoted to the dispersion relation of QSELM waves
and we give in a last section the discussion of the numerical results.
Il Kinetic Model

Let us consider an homogeneous, unmagnetized relativistic plasma in presence of a
high frequency (hf) electric field linearly polarized along Ox,
E, = Re(Eyexpiwgt)e,. (1)
The electron distribution function (EDF) is governed by the Fokker-Planck (FP) equation in
the Lorentz approximation
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where f(p, t) is the EDF, p is the relativistic momentum vector, e is the electron charge and
C,; the electron-ion collision operator given by [5]
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where € = ym,c?, y =1+ (p/m.c)?, v = m, IS the rest mass of the electron, Z;

is the ion charge number, n,, is the electron density, L. is the Coulomb logarithm and c is the
speed of light in vacuum. We should note that the Coulomb logarithm deviates from the

1



43'Y EPS Conference on Plasma Physics P4.113

classical expression, and typically its values ranges from 6 to 20. To solve Eq. (2), we use the

high- and low-frequency splitting, i.e; f = f_+ f,, where the subscripts s and h stand for low

and high frequency. It readily results
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The brackets in (4) indicate the average over the high-frequency field period T =27z/a,. The
hf part f;, of the EDF oscillates at the electric field frequency w, and it is expressed as
fn = Re[fn(p, wexp (iwyt)], where u = p,/p. In addition for solving Eqgs. (4) and (5), we
expand f; and f;, in the Legendre polynomials basis P; (i), i.e.; fs(p, 1) = 220 Pi() fa1(p)
and f,(p, ) = Y20 Pi(w) fri(p). To compute the components f;; of the secular distribution

function, first, we express from Eq. (4), f;, as a function of f; with the use of the high-
frequency approximation wy > v,; where v,; = # is the electron-ion collision frequency.
Then, the secular FP equation (4) could be deduced by substituting the components f;,; into

Eqg. (5). We just give here the expression of the second anisotropic distribution function f; ,

enough for the stability analysis of the electromagnetic modes
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where the isotropic EDf f; , is the Maxwell-Boltzmann-Juttner function [5] and v, = — is
0

the peak velocity of oscillation in the high-frequency electric field. To derive Eq. (6) we used

the orderlng — << 1.

Il Dispersion relation

Let us now consider the stability analysis of small amplitude QSELM modes described
by a wave vector k along the z-direction (polar axis), an electric field SE along x-direction

and magnetic field 5B along y-direction. The EDF is the sum of a perturbed EDF 6f and a

background EDF f;, It results the following perturbed Kinetic equation

D + 222 _ o(5E + 6B) -2 L= casp). (7)
. . . = K = .
Equation (7) have to be coupled to Faraday's equation, §E = —w 5 A 6B and to Ampere's

equation kASE = iuefc2§6fdﬁ. The derivation of dispersion relation is similar to that

obtained in a previous work [6]. Following the same procedure, first we expand
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the EDF in the spherical functions basis 6f = X; n 8 fim(©)Y1.m (6, @) where 8 and ¢ are the
polar and the azimuthal angles of the momentum vector p such as cosé = p,/p. After some

algebra we obtain the following expression for the growth rate of the QSELM,

9 11
[0z (v?-1)2
T T 3

o0
2 I
3K, (z) k?c? Vei 1 v3 k2c?

22wk wo(y2-1)° 15 ¢c2 vy
LA (y—z)F1€xP(—ZV)dV .

lF1F2 exp(—-zy)dy
r =

wo(y2-1)>
"=z Fexp(=zy)dy

(8)
We have used the notations, z = m,c?/T, and T is the electron temperature expressed in
energy units, K,(z) is the modified Bessel function of the second kind, w, is the plasma

frequency and F; the continued fraction defined by the following recursive formula:

-1
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We have solved numerically Egs. (8) and (9) with standard numerical methods to calculate
the integrals and the continued fractions and we summarize the results obtained in Figs. 1 and
2.
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Fig. 1 Growth rate as a function of the collisionality parameter kc/v,;.

a) The blue curve for I = 10°W /cm? , 1, = 1.06um, T = 15 keV and n = 10%*cm ™3,

b) The red curve for I = 10°W /cm?, 1, = 1.06um, T = 10 keV and n = 10%1cm 3.

¢) The black curve for I = 10**W /cm?, A, = 1.06um, T =5 keV and n = 1021cm ™3,

Fig. 2 Growth rate as a function of the collisionality parameter kc/v,; for different plasma densities. The laser
and plasma parameters are: I = 10*5W /cm?, 1, = 1.06um, T = 10 keV. a) black curve for n = 102°cm™3; b)

red curve for n = 10*%cm™3; ¢) blue curve for n = 101cm™3.

111 Discussion and conclusion
In Fig. 1 we presented the growth rate for the ion charge number Z; = 15 at the
critical densities, and for different physical parameters corresponding to z = 30 (blue curve),

z =150 (red curve) and z = 100 (black curve). We have checked numerically that the
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relativistic effects are no longer negligible in plasmas defined by parameters z < 100. We can
see that the growth rate of the QSELM modes increases with increasing z. In particular, for
the maximum growth rate, [,,(z =30) = 34T,,,,(z =100) and T, (z=50) =
17 Thhax(z = 100). This is due to the high laser intensities in the relativistic range which
drive higher temperature anisotropy.

For the most unstable modes the optimum wavenumbers are included in the
collisionless range. This can be explained by the efficiency of the electron-ion collisions as
compared to the Landau damping as stabilizing mechanisms. In Fig. 2 we consider the
physical situation where the ELM wave propagates in underdense plasmas. We can see that
the growth rates decrease drastically with decreasing electron densities. In particular for the
critical density n, = 1021cm™3 and the underdense density n, = 101¢cm ™3, the growth rate
decreases by two order of magnitude. This is due to the absorption of the laser wave by free
electrons through the inverse bremsstrahlung mechanism, since the collisional absorption
coefficient is proportional to the electron density.

In this work a new dispersion relation of the QSELM modes valid in the whole
collisionality range is established taking into account the relativistic effects. An explicit
expression of the second anisotropy (temperature anisotropy) of the electron distribution
function is also derived.

The stability analysis of QSELM modes in mildly relativistic plasmas relevant in near
future experiments of inertial confinement fusion is presented. It is found that high growth
rates are driven by the temperature anisotropy induced by the collisional absorption in the
privileged high-frequency electric field direction. These strong magnetic fields are
collisionless and thus their scale lengths are smaller than the electron mean free path. These
fields could prevent the heating of the inner layer of the target by inhibiting the thermal

transport of the laser energy deposited near the critical surface.
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