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I. Introduction 

 In laser-plasma interaction, magnetic fields play a crucial role as they could affect the 

transport processes and the energy absorption of the electromagnetic (ELM) by electrons. It 

has been shown [1] that anisotropy in the average kinetic energy of electrons (temperature 

anisotropy) provides a free energy that can drive quasi-static electromagnetic (QSELM) 

instabilities. The temperature anisotropy can be produced by the laser energy deposition [2] 

via inverse bremsstrahlung absorption mechanism. In current and near future experiments of 

inertial confinement fusion [3], the plasma temperature can reach values of about    

       which corresponds to mildly relativistic plasmas. In this work, we presented an 

analysis of the QSELM instability in homogeneous relativistic plasmas heated by ELM 

waves. The relativistic effects are due to the high electron thermal energy which is no longer 

negligible with respect to the electron rest energy. In Section II we presented the kinetic 

model used in this work. Section III is devoted to the dispersion relation of QSELM waves 

and we give in a last section the discussion of the numerical results.  

II Kinetic Model  

 Let us consider an homogeneous, unmagnetized relativistic plasma in presence of a 

high frequency (hf) electric field linearly polarized along Ox, 

                        .        (1)  

The electron distribution function (EDF) is governed by the Fokker-Planck (FP) equation in 

the Lorentz approximation 

  

  
       

  

   
                (2) 

where         is the EDF,    is the relativistic momentum vector, e  is the electron charge and 

    the electron-ion collision operator given by [5] 

    
 

  

 

  

 

   
            

  

   
        (3) 

where       
                ,   

     
   

    
 ,     is the rest mass of the electron,    

is the ion charge number,   , is the electron density,    is the Coulomb logarithm and c is the 

speed of light in vacuum. We should note that the Coulomb logarithm deviates from the 
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classical expression, and typically its values ranges from 6 to 20. To solve Eq. (2), we use the 

high- and low-frequency splitting, i.e; s hf f f  , where the subscripts s and h stand for low 

and high frequency. It readily results  

   

  
        

   

   
                 (4) 

   

  
       

   

   
         .        (5) 

The brackets in (4) indicate the average over the high-frequency field period 02 /T   . The 

hf part    of the EDF oscillates at the electric field frequency    and it is expressed as 

                        , where       . In addition for solving Eqs. (4) and (5), we 

expand     and    in the Legendre polynomials basis      , i.e.;                     
 
    

and                     
 
   . To compute the components     of the secular distribution 

function, first, we express from Eq. (4),    as a function of    with the use of the high-

frequency approximation        where     
 

  
    is the electron-ion collision frequency. 

Then, the secular FP equation (4) could be deduced by substituting the components     into 

Eq. (5). We just give here the expression of the second anisotropic distribution function      

enough for the stability analysis of the electromagnetic modes 

     
 

   

  
 

  

       
   

  

 

  

 

         

     

  
       (6) 

where the isotropic EDf      is the Maxwell-Boltzmann-Jüttner function [5] and    
   

    
 is 

the peak velocity of oscillation in the high-frequency electric field. To derive Eq. (6) we used 

the ordering 
  
 

       

II Dispersion relation 

 Let us now consider the stability analysis of small amplitude QSELM modes described 

by a wave vector      along the  -direction (polar axis), an electric field      along x-direction 

and magnetic field      along y-direction. The EDF is the sum of a perturbed EDF    and a 

background EDF   , It results the following perturbed kinetic equation 

   

  
     

 

   

   
              

   

   
                (7) 

Equation (7) have to be coupled to Faraday's equation,        
   

        and to Ampere's 

equation                  

 
     . The derivation of dispersion relation is similar to that 

obtained in a previous work [6]. Following the same procedure, first we expand  
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the EDF in the spherical functions basis                          where   and   are the 

polar and the azimuthal angles of the momentum vector    such as cos      . After some 

algebra we obtain the following expression for the growth rate of the QSELM, 

   
      

  

    

  
 

   

 
      

 

              
 
 

 
 

  

  
 

  

    

   

   
      

 
 

    
      

  
 

                 
 
 

 
      

 

            
 
   

  . 

            (8) 

We have used the notations,       
   , and T is the electron temperature expressed in 

energy units,       is the modified Bessel function of the second kind,    is the plasma 

frequency and    the continued fraction defined by the following recursive formula: 

           
    

   
 

      
 

  

        

         
     

  

.      (9) 

We have solved numerically Eqs. (8) and (9) with standard numerical methods to calculate 

the integrals and the continued fractions and we summarize the results obtained in Figs. 1 and 

2.  
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Fig. 1 Growth rate as a function of the collisionality parameter       . 

a) The blue curve for             ,          ,          and           . 

b) The red curve for            ,          ,          and           . 

c) The black curve for            ,          ,         and           . 

Fig. 2 Growth rate as a function of the collisionality parameter        for different plasma densities. The laser 

and plasma parameters are:            ,          ,         . a) black curve for           ; b) 

red curve for           ; c) blue curve for           . 

 

III Discussion and conclusion 

 In Fig. 1 we presented the growth rate for the ion charge number       at the 

critical densities, and for different physical parameters corresponding to      (blue curve), 

     (red curve) and       (black curve). We have checked numerically that the 
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relativistic effects are no longer negligible in plasmas defined by parameters      . We can 

see that the growth rate of the QSELM modes increases with increasing  . In particular, for 

the maximum growth rate,                           and            

              . This is due to the high laser intensities in the relativistic range which 

drive higher temperature anisotropy.  

 For the most unstable modes the optimum wavenumbers are included in the 

collisionless range. This can be explained by the efficiency of the electron-ion collisions as 

compared to the Landau damping as stabilizing mechanisms. In Fig. 2 we consider the 

physical situation where the ELM wave propagates in underdense plasmas. We can see that 

the growth rates decrease drastically with decreasing electron densities. In particular for the 

critical density             and the underdense density            , the growth rate 

decreases by two order of magnitude. This is due to the absorption of the laser wave by free 

electrons through the inverse bremsstrahlung mechanism, since the collisional absorption 

coefficient is proportional to the electron density.  

 In this work a new dispersion relation of the QSELM modes valid in the whole 

collisionality range is established taking into account the relativistic effects. An explicit 

expression of the second anisotropy (temperature anisotropy) of the electron distribution 

function is also derived.  

 The stability analysis of QSELM modes in mildly relativistic plasmas relevant in near 

future experiments of inertial confinement fusion is presented. It is found that high growth 

rates are driven by the temperature anisotropy induced by the collisional absorption in the 

privileged high-frequency electric field direction. These strong magnetic fields are 

collisionless and thus their scale lengths are smaller than the electron mean free path. These 

fields could prevent the heating of the inner layer of the target by inhibiting the thermal 

transport of the laser energy deposited near the critical surface.  
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