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Abstract

Through classical trajectory simulation, it is found that antihydrogen can be synthesized via
three body recombination involving magnetobound positronium. It has previously been reported
that giant cross-magnetic-field steps can occur as a result of electron-positron pair collisions. An
electron-positron pair collision can result in a correlated drift of the particles perpendicular to a
constant strong magnetic field. While the two particles remain in their correlated drift, they are
referred to as a magnetobound positronium system. Thus, magnetobound positronium is a two-
body system consisting of a positron-electron pair that becomes temporarily bound together in
the presence of a magnetic field. This study was conducted to determine what would happen if a
magnetobound positronium system encountered a finite-mass antiproton. The simulation incor-
porates a strong magnetic field (1 T) similar to that found within Penning traps. The simulation
shows that with a finite-mass antiproton, the electron will be ejected from the system, and the

positron is captured into a bound state with an antiproton thereby synthesizing antihydrogen.

Introduction

Previous simulations indicate that electron-positron pair collisions can result in the particles
being temporarily correlated and experience giant cross magnetic field drifts[1]. Those particle
pairs have been referred to as being in a magnetobound state[2]. This phenomenon occurs at
low temperatures, low energies, and strong magnetic fields similar to the environment found
in a Penning trap. Given this, it has been previously proposed that magnetobound positronium

could be a useful intermediate step in the production of antihydrogen[2].

Governing Equations

In the simulation, the positron, electron, and antiproton interact classically. For brevity, the
positron will be denoted as particle 1, the electron as particle 2, and the antiproton as particle
3. Variables will be denoted with i, j, and k, which have values 1, 2, or 3 for each particle and
i # j # k. Beginning with the electric force, Coulomb’s law states that the electric force exerted

on particle i by particle j is given by Fyupyj = keqiqjrij/ r3., where k. is the Coulomb force

ij°
constant, ¢; and g; are the charges of particle i and j, r;; = |rj;| is the distance between particles,
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and rj; = rj —r;j is the separation vector between the particles. Coulomb’s constant is defined as
k. = 1/(4mep), in which g is the permittivity of free space.

Additionally, the magnetic force from the magnetic field on the particle is denoted by F ;5 =
krqiB(viyi— v,-xj), where in this simulation the magnetic field, B, acts parallel to the unit vector
ﬁ, (i,j,ﬁ) are the Cartesian unit vectors, k;, is the Lorentz force constant (in SI units k; = 1),
q is the charge of the particle, v is the velocity of the particle, and v;y, vjy, v;; are the velocity
components of the particle.

Newton’s second law governs the classical motion of the particles. For particle i, Fopipy; +
Fonibyk +Fonibyp = m;a;, where m; is the mass of particle i, and a; is its acceleration. The position
and velocity of each of the particles are functions of time. The position and velocity of a particle
are written as r;(t) = x; ()i +yi(t)] + zi()k, and ¥’(r) = x/ ()i + yi(1)j + Z, (k.

Therefore, the equations of motion of particle i are

(keaig; Pil0) =x5(0]) " | (keaqige xt) = (1))
3

Sij Sik +kLBqiyi(t) = mix; (1), 1)
(kear [Y;(lg ~(0) + (keqra [x;(g —u0)) krBgix(t) = miy; (1), )
ij !
(keqiq; [Zi(fg —z(1)]) n (keqiqx [x"(tz —%(0)) _ miz; (1), 3
Sij Sik

Where s;; and s;; are the separation between particles i and j and particles i and k respectively.

The electron and positron are treated as traveling in opposite directions towards each other
from an infinite distance with equal kinetic energies, K., and the antiproton is at rest an infinite
distance from both the electron and positron before the start of the simulation. The electric po-
tential energy is defined to be zero when the particles are infinitely separated from one another.
Conservation of energy requires that at the start of the simulation

keqi1q2 n keq1q3 +kcqac12
r120 r130 3o ’

“)
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2K, = Eml (VxIO + Vy10 + vle) + 57’”2 (szo + Vy20 + VzZO) +

where vy10, vy10, and v;1o are the initial velocity components of the positron at the beginning
of the simulation and vy, vy20, and vy are the initial velocity components of the electron.
The separation between the particles at the start of the simulation is r;jo. For this simulation,
Vel0 = Vx20 = Vy10 = Vy20 = 0, my = my = m, and —v,19 = v,20.

Figure 1 shows the initial positions of the particles at the start of the simulation. The elec-
tron and positron approach each other with initial velocities that are of equal magnitude but in
opposite directions. The simulation begins with the positron at (b/2,0,{b/2), the electron at
(—=b/2,0,—Cb/2), and the antiproton at (0, 5,0).
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This gives rjp0 = by/ 1+ CZ, and ri30 = 130 =
V/(b/2)2+82+(Eb/2)2. The parameter b is re-

ferred to as the impact parameter, {b is the inital ax-

+
e

(b/2,0, Zbi2)

ial separation between the electron and the positron,

and ¢ is the distance between the coordinate origin

and the antiproton, which is located along the y-
axis. Plugging in values and rearranging Equation

(4), we find the nonzero velocity components to be

o

2K, k ] o
V0 = — cq192 . (5) (-b/2, 0, ~Zb/2)
m mb+/1+ (2
In which the positron takes the negative velocity Figure 1: Initial positions of particles.

and the electron takes the positive velocity.
The simulation occurs with the parameters, B =1 T and K. = 9 x, where k has the value
of Boltzmann’s constant in SI units, but with units of energy. The impact parameter b is set

equal to 3.1r,, due to the large cross-magnetic field drift distance resulting from an electron-

positron collision[1]. Here, 7. is the cyclotron radius and is defined as \/ 2K.om/ (k%quz). The
cyclotron radius is 9.3910 x 10~8 m. The trajectories of the positron and electron in a magnetic
field were found by solving their equations of motion using a classical trajectory simulation
on Mathematica using Implicit Runge-Kutta. The total energy of the system changed by 2.973
x 1078 % for the sample system detailed in the results section, which shows that energy is

conserved throughout the simulation.

Results

In the simulation, & was varied so that the intial position of the antiproton was moved in
increments of 1r. along the y axis from 0 to 50r.. Although a choatic system, the positron was
more likely captured when the starting y axis position for the antiproton was in the 197, to 357,
range. Fig. 2a shows the electron expelled, while the positron is captured by the antiproton,
as projected onto the yz plane for 6 = 27r.. Fig. 2b shows the positron being captured by the
antiproton as projected onto the yx plane. Both graphs are normalized by r.

In addition to a visual inspection of the plotted trajectory of the positron about the antiproton,
the total energy of the antihydrogen can be examined. For a positron in a bound state, it will
have a negative total energy. As the positron enters a bound orbit, the kinetic energy term and
the electric potential energy term between the positron and the antiproton stabilize, resulting

in a value for the total energy of the antihydrogen system that approaches a constant negative
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(a) Projection along the yz plane. (b) Projection along the yx plane.

Figure 2: Paths of the positron, electron, and antiproton.

value as seen in Fig. 3. As a result of the positron’s negative total energy and the conservation
of energy, the electron therefore carries away excess energy as it is expelled from the system,

allowing the formation of antihydrogen to occur.

Conclusion

Total Energy of Antiproton System vs. Time
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