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[1]. However, there have been reports Figure 1: Spectrogram of local By sensor signal located
of plasma Alfvén eigenmode oscilla- on HFS, discharge #11153. fi curve represents parametric
tions in purely ohmically-heated plas- dependency from eq. (2).

mas (i.e. without external sources of

fast ions) on several experimental de-

vices, including TFTR [2], ASDEX-U [3] and MAST [4]. In this paper we report observation
of similar Alfvén eigenmode oscillations in ohmically heated plasmas on the COMPASS toka-
mak [5] and classify them with respect to the reports from other devices from the perspective of

mode frequency scaling, localization and possible excitation mechanisms.

Long-lived Alfven oscillations
The most of the COMPASS tokamak discharges contain high-frequency (f ~ 200 kHz —1000
kHz) oscillations of local poloidal magnetic field By on High Field Side (HFS) and on divertor

electric probes — a typical example of the magnetic spectrum is shown in fig. 1. The frequency of
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the oscillations evolves over the discharge duration and it has been found that it follows plasma

parameter scaling of shear Alfvén wave propagating along helical fieldline [1]:
1 By

~ 27Rq(r) /aop ()’

where R is major radius, g safety factor, By toroidal magnetic field, ty vacuum permeability and

Ja o))

P plasma ion mass density. Assuming constant plasma composition, stiff plasma profiles and
taking experimental arrangement into consideration, the above relation can be approximated by

simple relation:
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where I, stands for total plasma current and n, represents line averaged electron density. Fig.

2 shows very high correlation between the observed frequencies of the oscillations and eq. (1)
for multitude of discharges of different parameters, but same plasma composition. This leads
to the conclusion that observed oscillations are of Alfvénic character. Furthermore, preliminary
simulations by KINX MHD code [6] show that frequencies of the observed oscillations are in
agreement with position of Bragg gaps in Alfvén continuum, implying that these oscillations
are Alfvén Eigenmode oscillations.

Similar oscillations in ohmic plasmas

have been first reported on TFTR toka- Pearson correlation = 0.96
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plasma regions (see fig. 1). AFM have

further been reported to be unaffected Figure 2: Multi-discharge correlation between observed
by NBI, correlated with edge MHD oscillation frequency and eq. (1). K. represents parameter
events (ELMs), but not core events dependent on plasma ion mass composition (which was the
(e.g. sawteeth) and having amplitude Same for the plotted discharges).

suppressed upon H-L transition, all of

which has been observed also for COMPASS oscillations. The AFM amplitude scales as:
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which is also valid for the COMPASS oscillations, with linear correlation coefficient of 0.83.
However, AFM toroidal structure of n = 0 points towards them being Global Alfven Eigenmode
oscillations [7], while COMPASS modes in this manner are closer to the n = 1 electron diamag-
netic drift direction rotating ohmic TAE, observed on ASDEX-U [3]. Taking the similarities into
account, as well as the fact that amplitude of the modes drops upon H-L transition, it is possible
that the driving mechanism of COMPASS oscillations is the same as that of ASDEX-U ohmic
TAEs. That is, coupling of the drift wave turbulence to the ordinary Alfvén wave spectrum at

cold plasma edge [3, 8].

High frequency chirping oscillations
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Figure 3: Top plot — soft X-ray radiation from central
several tens of milliseconds. The over-

plasma. Bottom plot — chirping mode time evolution on

all frequency of the modes follows scal-
spectrogram of Bg sensor located on LFS. fa curve rep-

ing in eq. (2), as can be also seen in fig. resents parametric dependency from eq. (2).
3. The onset of the oscillations is asso-
ciated with peaks of soft X-ray and hard
X-ray radiation (see fig. 3), implying possible role of internal MHD events, hence different ex-
citation mechanism than the one responsible for the long-lived oscillations.

Very similar oscillations have been recently reported on tokamak TUMAN-3M [9], whose
excitation mechanism was preliminarily identified as internal reconnection MHD events taking
place during sawteeth oscillations. The frequency chirps on COMPASS are also seen to be cor-

related with sawteeth activity. However, the modes can be present even in the absence of the

sawteeth, implying possibly more general excitation mechanism, hence are also possibly asso-
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ciated with runaway electron population. Ohmic Alfvén oscillations driven by internal MHD

reconnection events and runaway electrons have already been reported on tokamak MAST [4].

Conclusions

We observed two different types of high frequency oscillations of Alfvén character in ohmic,
L-mode plasma discharges on the COMPASS tokamak. The long-lived oscillations, present dur-
ing most of the discharge duration bear many similarities to the AFMs observed on TFTR [2] as
well as ohmic TAEs observed on ASDEX-U [3]. The frequencies of the oscillations show very
good correlation with Alfvén eigenmode parametric scaling and are possibly driven by coupling
of drift wave turbulence to Alfvén wave spectrum [3]. The other type of the oscillations mani-
fests itself as short-duration chirping bursts of magnetic signal, also follow Alfvén eigenmode
scaling of the frequency and their onset is typically correlated with peaks of X-ray radiation. The
possible driving mechanisms, that will be further investigated in the near future, include inter-
nal reconnection events in core plasma and significant population of runaway electrons. These
observations complement our previous observations of Alfvén eigenmodes observed in both
ohmic and NBI-heated COMPASS plasmas [10], providing more complete picture of Alfvén
eigenmode oscillations in COMPASS plasma.
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