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Abstract—Preventing disruptions and instabilities occurrences
during nuclear fusion experiments represents one of the main
goal for the nuclear fusion community. The first plasma-wall
material may play a crucial role in this sense since it deals with
plasma impurities leading to plasma break-down conditions. In
particular, the performance of the limiter recently adopted in
the Frascati Tokamak Upgrade (FTU), Cooled Lithium Limiter
(CLL), strictly depends on its temperature. In other words, more
the temperature is uniformly distributed over the limiter s urface
and less impurities are present in the plasma. Thus, being the
thermal limiter behavior strictly related to plasma perfor mances,
monitoring the CLL thermal evolution may help to diagnose
unwanted plasma behaviors. In this paper, a data-driven model
identification of the CLL temperature is presented. In particular,
different linear autoregressive models have been identified and
a final comparison will be provided showing the best models in
terms of performance during the training and testing phase.

I. I NTRODUCTION

Nuclear fusion technology has been widely investigated
in the last centuries. From one hand , it would face the
heavy energy demand guaranteeing inexhaustible, safe and
environmentally-friendly energy production , from the other
hand a lot of works have to be done in order to make nuclear
fusion a real source able to satisfy the world-wide growing
energy consumption demand. Although many efforts have
been made in order to face its practical limitations, several
issues are still open. The hard conditions required to allow
nuclear fusion to take place make this technology one of the
main challenge the scientific community is dealing with.

Generally speaking , nuclear fusion technology needs high
temperature and pressure conditions in order to generate parti-
cles nuclear fusion since colliding particles have to overcome
the repulsive force acting among them. As a consequence,
these hard conditions strongly decreases the probability to
obtain stable plasma confinement and to observe self-sustained
reactions leading to energy production.

Nowadays, the main adopted device used to reach self-
sustained nuclear fusion reactions thus obtaining a stable
plasma is Tokamak. It is a toroidal chamber magnetically
confining high temperature plasma in a torus shape by means
of strong toroidal and poloidal magnetic fields. The main issue
is that plasma confinement is not maintained for enough time
making fusion plant energetically not efficient. This scenario
is mainly due to the occurrences of instabilities phenomenaof
different natures that should be identified and avoided in order
to improve plasma performance. For instance , often impurities

in plasma appears because of the interaction of the last closed
magnetic surface (LCMS) and the first material facing plasma
inside the reactor chamber. These impurities affects plasma
performances thus leading to plasma disruption.

In this perspective , it seems evident that the nuclear fusion
field involves several disciplines ranging from math to chem-
istry to physics to engineering. Thus, many researcher from
different fields get involved in nuclear fusion experimentation
all over the world. In particular, the main Italian research
center for nuclear fusion is located at the ENEA institutionin
Rome. Here, a medium-size Tokamak called Frascati Tokamak
Upgrade (FTU) operates since 1990. FTU creates high density
plasma by mean of 8T magnetic fields and plasma currents of
MA orders. It adopts a capillary porous system (CPS) cooled
liquid lithium (CLL) as first plasma wall surface [2]. It is an
actively cooled system where water circulates at high pressure
and at the temperature of about200◦C heating lithium up
to the melting point and removing the heat during plasma
discharges [3]. More the temperature is uniformly distributed
better the CLL performance is.

As a consequence, monitoring the temperature evolution is
very important in order to both analyze and enhance CLL as
well as nuclear fusion experiment performances. The diagnos-
tics systems devoted to this purpose are two thermocouples
located on the limiter water circulation system and a fast
infrared camera (IR) looking at the whole limiter surface.
While the thermocouples give information of the temperature
at 2 specific point very close but exactly not on the CLL
surface, the IR gives an high resolution thermal information.
These collected data may be used to drive thermal models able
to predict the dynamical behavior of temperatures thus can
help in controlling the plasma behavior far from instabilities
and disruptions. Besides, these models can help to reconstruct
missing data usually lost in real industrial plants.

Several control strategies have been implemented in the last
years in order to regulate the temperature of different kind
of limiters. They mainly have been implemented exploiting
physical models such as in [5] where an ideal approximation
of the limiter is taken into account thus loosing information
when undesired behaviors emerge. Geometrical and spatial
variables are easier to be controlled so that are the ones more
often taken into account when designing a control strategy,
especially when disruptions are about to occur.

In this paper, it is explored the opportunity to identify a
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data-driven predictive model that would me more suitable in
reproducing thermal behavior in working conditions far from
the ideal ones.

In this perspective, different linear autoregressive models
(ARX) are identified when using both spatial variables and
past temperature data as input and a comparison of them is
given.

The paper is organized as follows: in Section II the identifi-
cation of quantities relevant to the model design is presented,
in Section III the linear and nonlinear models adopted are
described, while Section IV is devoted to the comparative
analysis of models performance. Conclusive remarks on the
suitability of the modeling approach are given in Section V.

II. DATA SELECTION AND PRE-PROCESSING

A big amount of data is collected in the FTU plant related
to both measured and reconstructed variables relevant for
nuclear fusion experiments. In order to achieve our purpose,
the first step is deciding which experimental campaign is the
most suitable . In fact, in order to catch the desired thermal
dynamical behavior , variables with a significant transient
regime are desirable.

As previously said, the IR camera represents the main
source of thermal information due to the fact that it points to
the whole limiter surface thus providing punctual information
about the temperature that the CLL reaches when plasma
irradiates heat to it. In fact, each pixel image value represents
the thermal value associated to a specific point of the limiter.
The IR camera output is a video stream with frame rate up to
365 fps that is pre-processed in order to correct images from
systematics errors, e.g. emissivity error due to the fact that the
limiter is not a perfect black body. The detailed description of
the pre-processing stage is given in [4].

One of the most important phase in model identification is
the choice of the input variables to be used. In particular, firstly
they have to be highly related to the model output and secondly
they have to be suitable to be used in a controlling strategy
. Thus, after carrying out a correlation analysis in which the
most correlated variables are chosen, a selection of the ones
that are more suitable for a control system implementation is
made. As previously stated, the model output is the thermal
information coming from the IR camera. The input variables
candidates are the geometrical features of the plasma ring
characterizing plasma shape. In fact, four direct measurements
plus an indirect ones , fully characterize plasma position :
the internal and external plasma radius , the upper and lower
plasma radius as direct measurement and elongation as indirect
measurement,i.e. the ratio between semi-axes.

Usually cross-correlation is adopted as a measure of vari-
ables similarity, thus revealing which candidates are more
appropriate as model inputs . As a consequence, a cross-
correlation analysis between each candidate and the IR camera
measurements is performed for each pixel. In particular, Fig.1
and Fig.2 show the cross-correlation maps when elongationE

and upper radiusZ1 are taken into account, where each pixel
represents the correlation coefficient, colorcoded according to

the reported colorbar, of the transient regime of the same pixel
with respect to related plasma configuration parameter.
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Fig. 1. Correlation analysis between plasma ring elongation and temperatures
over the limiter surface. The values of the correlation coefficient are color-
coded according to the colorbar: the temperatures measuredby the camera
are highly correlated with the plasma ring elongation over the entire surface.
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Fig. 2. Correlation analysis between plasma ring elongation and temperatures
over the limiter surface. The values of the correlation coefficient are color-
coded according to the colorbar: the temperatures measuredby the camera
are highly correlated with the plasma ring elongation over the entire surface.

Further information is provided by the cross-correlation
plot as a function of the lag between each candidate and the
thermocamera temperature. In Fig.3 cross-correlation is shown
for a specific pixel with respect to each measured plasma
configuration parameter. It is noteworthy that bothZ1 and
E have high correlation level over the entire limiter surface
thus appearing suitable for model identification.

Being the heat spreading a diffusion process, temperature
evolution of a specific pixel will depend also on its neighbors
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Fig. 3. Plot showing the correlation coefficient as a function of the lag between
a specific pixel of the IR camera and each geometrical plasma variables

temperature. As a consequence, in order to catch thermal
dynamical behavior for a given pixel , the the contributionsof
the pixels at a given distance should be considered.

On the basis of the correlation analysis, the following set
of input variables has been selected to model the temperature
of pixel (i, j):

• E(k): elongation of the plasma ring;
• Z1(k): upper radius of the plasma ring;
• Ti+Ni,j(k), . . . , Ti+1,j(k), Ti−Ni,j(k), . . . , Ti−1,j(k),

Ti,j+Nj
(k), . . . , Ti,j+1(k), Ti,j−Nj

(k), . . . , Ti,j−1(k):
temperature of the proximal pixels.

whereNi and Nj represent the number of proximal pixels
along the vertical and horizontal axes with respect to pixel
(i, j).

The consistency of the relevance of the geometrical features
of the plasma ring on the thermal behavior is confirmed in
the existent literature [5]. The correlation analysis has been
performed over all the available transient regimes of each
pixel.

A deep inspection of the available data has been carried out
and outliers have been neglected from the training dataset.

So a training set of30 time-series, each related to the trend
of the temperature of a specific pixel of the video stream, and
a validation set of20 pixels have been selected. Each time-
series consists of233 samples taken with a sampling time of
0.0085s, for a grand total of4860 training patterns and3645
validation patterns.

III. M ODEL IDENTIFICATION

In this paper, we compare the performances of different
ARX models identified by using the same dataset. Namely,
we focused on a linear autoregressive model with exogenous
inputs (ARX) when different number of regressors area taken
into account.

A normalization phase is required in order to make
comparable measurements magnitudes coming from differ-
ent processes such as geometrical features and temperatures.
Thus, the whole dataset has been normalized in the range
[

−1; 1
]

.
On the basis of the outcome of the preliminary analysis of

available datasets we used the following regressors structure
to estimate the output at timek:

(Ti,j(k − n), . . . , Ti,j(k − 1),
E(k − n1), . . . , E(k − 1),
Z1(k − n2), . . . , Z1(k − 1),
Ti+Ni,j(k − n3), . . . , Ti+Ni,j(k − 1), . . . ,
Ti+1,j(k − n3), . . . , Ti+1,j(k − 1),
Ti−Ni,j(k − n3), . . . , Ti−Ni,j(k − 1), . . . ,
Ti−1,j(k − n3), . . . , Ti−1,j(k − 1),
Ti,j+Nj

(k − n3), . . . , Ti,j+Nj
(k − 1), . . . ,

Ti,j+1(k − n3), . . . , Ti,j+1(k − 1),
Ti,j−Nj

(k − n3), . . . , Ti,j−Nj
(k − 1), . . . ,

Ti,j−1(k − n3), . . . , Ti,j−1(k − 1))

(1)

whereTi,j(k) is the temperature of thei, j − th pixel at time
k, E(k) is the elongation of the plasma ring at timek, Z1(k)
is the upper radius of the plasma ring at timek, Ni is the
number of proximal pixel along the horizontal axis,Nj is the
number of proximal pixel along the vertical axis. The number
of regressors is defined byn (regressors of the state),n1

(regressors of the elongation),n2 (regressors of the internal
radius), andn3 (regressors of the proximal temperatures).

Nine ARX models with different number of regressors are
considered and their performances compared. Starting from
the model withn = 1 pole, and one zeros, i.e.n1 = n2 =
n3 = 1 to the model withn = 3 poles, and three zeros, i.e.
n1 = n2 = n3 = 3.

Results after denormalization of the model outputs, are
reported in Figure 4 where the trend of the temperature ob-
tained as output of the identified model and the corresponding
measured temperature of a pixel belonging to the test set are
show. As it can be observed from Figure 4, the ARX models
performance are satisfactory.
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Fig. 4. Plot showing both model output( red signal) and target ( blue signal
)for each ARX model : (a)n = 1, n1 = n2 = n3 = 1, (b) n = 1, n1 =

n2 = n3 = 2, (c) n = 1, n1 = n2 = n3 = 3, (d) n = 2, n1 = n2 =

n3 = 1, (e) n = 2, n1 = n2 = n3 = 2, (f) n = 2, n1 = n2 = n3 = 3,
(g) n = 3, n1 = n2 = n3 = 1, (h) n = 3, n1 = n2 = n3 = 2 , (i)
n = 3, n1 = n2 = n3 = 3
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IV. COMPARATIVE ANALYSIS

In this section the models identified have been evaluated and
compared by means of a number of performance indices. In
Table I the values of the correlation coefficient (CC) between
estimated and measured output, the root mean square error
(RMS), the maximum of the absolute value of the error
(MAE) are reported for the training phase for the two models
identified. The same quantities for the test phase are reported
in Table II.

TABLE I
PERFORMANCE INDICES FOR THE TRAINING PHASE.

CC RMS MAE

n = 1, n1 = n2 = n3 = 1 0.9830 5.3092 20.7847
n = 1, n1 = n2 = n3 = 2 0.9853 4.9741 19.4387
n = 1, n1 = n2 = n3 = 3 0.9840 4.9626 17.7008
n = 2, n1 = n2 = n3 = 1 0.9830 5.3061 20.7738
n = 2, n1 = n2 = n3 = 2 0.9854 5.0628 18.0593
n = 2, n1 = n2 = n3 = 3 0.9840 5.1009 16.1029
n = 3, n1 = n2 = n3 = 1 0.9830 5.3006 20.7837
n = 3, n1 = n2 = n3 = 2 0.9854 5.0612 18.0376
n = 3, n1 = n2 = n3 = 3 0.9836 5.1246 16.3162

TABLE II
PERFORMANCE INDICES FOR THE TEST PHASE.

CC RMS MAE

n = 1, n1 = n2 = n3 = 1 0.9707 8.8565 24.0167
n = 1, n1 = n2 = n3 = 2 0.9731 8.3111 22.7386
n = 1, n1 = n2 = n3 = 3 0.9647 8.6587 24.3664
n = 2, n1 = n2 = n3 = 1 0.9708 8.8683 23.9787
n = 2, n1 = n2 = n3 = 2 0.9728 8.6802 20.9390
n = 2, n1 = n2 = n3 = 3 0.9648 9.1732 21.4273
n = 3, n1 = n2 = n3 = 1 0.9708 8.8606 23.9470
n = 3, n1 = n2 = n3 = 2 0.9727 8.6661 20.8996
n = 3, n1 = n2 = n3 = 3 0.9637 9.1695 21.6343

The models provides comparable performance as it can be
noticed in Fig. 4 and from the index in the tables, however
it appears that models withn = 3, n1 = n2 = n3 = 3 and
n = 2, n1 = n2 = n3 = 2 appear to be the best ones as it
can be seen from the performance index in the testing phase.

V. CONCLUSION

A fundamental step toward the control of plasma experi-
ments far from disruption is represented by the identification
of a real model of the temperature distribution over the
limiter surface, thus adopting data-driven models rather than
a physical ones.

In this work a comparison of different linear autoregressive
models estimating the temporal evolution of the limiter surface
operating at the FTU is proposed . The effects of a set of the
geometrical features of the plasma ring and the effects of the
temperatures of neighboring regions are taken into account.

Nine different ARX models have been identified exploiting
data collected during FTU experimental campaign. Models
produce comparable results although the performance of the
ones withn = 3, n1 = n2 = n3 = 3 andn = 2, n1 = n2 =
n3 = 2 appear to be slightly higher than the others. Thus, in
the future perspective, a deepen investigation of other models

may be conducted and a further comparison with the analyzed
ARX models performed.
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