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Abstract The Bump-on-Tail (BoT) model is often adopted to characterize the non-linear in-
teraction between fast ions and Alfvén Eigenmodes (AEs). A multi-beam Hamiltonian approach

to the BoT model is tested here as paradigm for the description of these phenomena.

Introduction In this work, we reproduce the non-linear dynamics of a single beta-induced
Alfvi Eigenmode (BAE) resonance treated in [1], with a one-dimensional (1D) N-body descrip-
tion of the beam-plasma system (BPS) instability [2, 3] in the presence of an isolated resonant
mode. For a single toroidal number and constant frequency, the quantity C = @wpagPy — npaeE
(where Py and E are the particle toroidal angular momentum and energy, respectively, while
npar denotes the toroidal mode number and wgsr the mode frequency), and the magnetic mo-
ment [ are constants of the particle (perturbed) motion. Cutting the energetic particle (EP)
phase space into slices of given u and C, particles remain, thus, in the same slice during the
whole evolution: the wave-particle power exchanges within different slices are then indepen-
dent of each other. The mode evolution, however, is consistent with the presence of all the EP
phase space slices (for details on Hamiltonian mapping technique, see [4]).

A proper dimensional reduction of the phase-space dynamics is at the ground of the pos-
sibility to use the BoT paradigm in this framework. In other words, by selecting constants of
motion for the particle dynamics, we are able to reduce the distribution function evolution to a
1D non-autonomous problem. For an assigned initial subdivision of the EP phase space accord-
ing to a set of integrals of motion (here C and u), we can map each independent slice into and
equivalent 1D BoT problem. Such a prescription is a necessary ingredient provided, in general,
by a multi-dimensional (linear) numerical analysis, to be complemented by the mapping to the

equivalent BoT problem described below.

Theoretical Framework The mapping between the reduced radial profile (r) and the BPS

velocity (v) space is a one-to-one link between the two corresponding independent variables. It
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is derived from the resonance condition! @yes(7) — @yes(Fres) = Kres(V — Vres )/ @a0 (Where vyeq is
the resonant velocity of the BPS), by defining a local map trough the expansion of ®,,.s near 7

(the resonant normalized radius) as @yes — Ores(Fres) = (F — Fres) 07 Ores |7,y = (F — Fres) Dfps:

V= Tres +kres(V_ Vres)/((z);eswAO) . (D

The instability drive y;, for the BPS is obtained from the normalized beam distribution func-

tion fp = fB/np as

/oo = ”(Q)O/kreS)zfl3ava| 5 (2)

Vres

where 7] = (ng/2n,) 1/3 and oy = @), is the corresponding Langmuir wave frequency. Moreover,
for the considered resonant mode, we assume the following resonance condition kyegVyes = 0.
Here, we impose the proper BPS drive in order to recover the BAE linear growth rate given
in [1] (specified for a fixed fast-ion density): ¥par/@par = 1./ W With @y = @, = Wpar Wao.
Imposing now the constraints on the normalized radius (fixing a reference frame for the velocity
space), i.e., Fmin = 0 — Vigax, "Max = 1 — Viin = 0, and reproducing with fB(v) the normalized

EP radial profile fz(7) (right-hand panel of Fig.1), we finally get

7’ = ;’;iEE (1 - fres>2—_fjff;]’(:“ o 3)

Following the reference case of [1], we now consider the dimensional reduced analysis for

a given “resonant” slice characterized by the largest power exchange. We, thus, get (as shown
in the left-hand panel of Fig.1) the resonance condition 7,.s = 0.474, with ¥4 = 0.0021 and
@pag = 0.122. We then obtain: 7 = 0.151 and ¥, = ¥, @, with };, = 0.114. Using dimension-

less velocities v =, (2t/L)~! v /{5, the mapping can be recast as
V = Vyes — (F— Fres) A | A = fj@pag /@y, = —0.0823 . &)

We now sample the fast-ion density radial profile fy(7) in n = 600 “beams”, and formally
introduce the number of particles N; (with j =1, ..., n), located at 7;, for the N-body simula-
tion: we use N = 3.6 x 10° total particles. From the constraint 0 < 7 < 1, using dimensionless

Following [1], the EP/BAE system is characterized by toroidal mode number nz4r = 2 and the poloidal har-
monic mpag = 4. The normalized Tokamak radius reads 7 = r/a (a denotes the minor radius), while frequencies
are normalized as @ = @/ @49 (With @40 = vao/Ro, Where v4 is the Alfvén speed at the magnetic axis and Ry the
major radius). The aspect ratio is set as Ry/a = 10 and fast ions (hot) velocity is assumed as vy = 0.3v40. At the
same time, the BPS consists in a background plasma with constant particle density n, and beams with total number
density np. The plasma is assumed cold, thus the dielectric function reads € = 1 — a)g /@ (the plasma frequency
is a)g =4nn pe2 /m,). The periodicity length of the system is indicated as L, thus the resonant wave-number can be

normalized as £,e5 = kyes(270/L) .
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Figure 1: Left-hand panel: Resonance structure and frequencies (indicated in the plot), mode structure

(filled green) and effective power transfer (dashed black). Right-hand panel: EP density radial profile.

velocities, we obtain V,.s = (Frs — 1)/A. For simplicity, we move to the reference frame of the
average beam speed, u = V/lyo5 — (V) /Lres, and arbitrarily fix the resonant normalized wave-
number (¢,.; = 1). The velocity initial conditions of beam particles (left-hand panel of Fig.2)
are defined from the 7;-sampling using the mapping above, with the initial distribution defined
by N;. This system is evolved self-consistently in order to generate the dimensionless potential
0y (right-hand panel of Fig.2): simulation results are consistent with the assumed 7; and cor-
respond to an initial exponential evolution (in red in the figure) followed by mode saturation

(| @res| AT ~ 0.084) and the consequent non-linear oscillation.
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Figure 2: Left-hand panel: Initial distribution of particles for the BPS. Right-hand panel: Langmuir

mode evolution in Log scale and the line (dashed red) representing the initial exponential evolution.

Numerical Analysis Let us now address predictivity of the obtained numerical results on the
reduced 1D radial profile evolution. A direct comparison between the self-consistent EP/BAE
distribution function and that obtained from our BPS simulations is shown in Fig.3. The very
good agreement of the two distribution functions is evident, demonstrating the reliability of the
proposed mapping procedure. It is worth noting that the observed density flattening width is
also in agreement with the BPS estimate of the non-linear velocity spread Auyy ~ \/AW%AST (in
the right-hand panel of Fig.3, we indicate the mapped back value Aryz), suggesting a simple
predictive model of this behavior. Finally, we observe how (see Fig.4) the growth rate scaling
with the mode saturation amplitude, for the EP/BAE system, is quadratic as far as the resonance

width (power transfer region) is smaller than the mode structure. Otherwise, the behavior is lin-
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Figure 3: Left-hand panel: Initial density distribution of test particles. Right-hand panel: Density pro-

file around saturation. (Blue Line: BPS evolution mapped back to ¥ space. Red Bullet: data from [1])
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Figure 4: Left-hand panel: Saturation amplitude of the scalar potential vs Vgag.

Center panel: Lang-

muir mode saturation level in the BPS for correspondingly different drive (Ygag / Opag = Y./ 0p). Right-

hand panel: Initial distribution and non-linear velocity spread for the BPS, in the case of large drive.

ear. Analogously, the quadratic scaling is also recovered for the BPS system, while the deviation
for large y; values occurs when Auyy becomes so large that flat regions of the initial distribution
function are affected by nonlinear dynamics (as depicted in the right-hand panel of Fig.4): in

this limit the BPS model clearly fails.

Outlooks The obtained results constitute the starting point for the investigation of more real-
istic cases of relevance for ITER with the present approach, i.e., the analysis of multi resonance
regimes for which different resonant regions overlap [5]. Finally, two further conceptual ques-
tions must be properly addressed: (i) properly accounting for the intrinsic multi-dimensional
features in the reduction of the AE dynamics to the 1D BoT model; (ii) introducing effective

form factors in order to model the finite mode structure and recover the linear 7y scaling of mode

saturation by radial decoupling.
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