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Sustained Field-Reversed Configuration (FRC [1,2]) plasmas have recently been
achieved in the upgraded C-2U device [3], the world’s largest compact toroid (CT) device (T;
<1 keV, T. < 0.15 keV, <n> < 4x10" m™). Crucial ingredients for FRC sustainment are (i)
increased total neutral beam injection (NBI) input power >10 MW (15 keV hydrogen) with
tilted injection angle; (ii) enhanced edge-biasing capability for stability control via coaxial
plasma guns located in the C-2U divertor sections. In the best operating regime we have
successfully achieved plasma sustainment times up to #s > 5 ms, via building up
NBI-supported, well-confined fast particle populations. In the longer-pulse regime the plasma
lifetime can be extended up to and beyond the end of the NBI pulse-duration (s> 8 ms). In
the FRC core, ion-scale turbulence is absent, and only weak electron-scale modes have been
detected (0.04 < k0. < 0.4, 5 < k0, < 50, where pe, ps are the electron gyroradius and the ion
sound gyroradius). In addition to controlling macroscopic (toroidal mode number n=1,2)
MHD-modes, edge biasing produces radially sheared ExB flow at/outside the FRC
separatrix, substantially reducing scrape-off layer (SOL) density fluctuations measured via
multichannel Doppler Backscattering (DBS), and dramatically improving particle and energy
confinement.

Figure 1 shows the normalized excluded flux radius (measured via plasma diamagnetism)
for a sequence of FRC discharges obtained at different times as C-2 and C-2U capabilities
and performance were upgraded. A detailed description of the C-2 and C-2U geometry and
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Fig. 1: Time evolution of FRC midplane normalized excluded flux radius: FRC with gun (biased)
(C-2); FRC supported via one axial plasma gun and NBI (~4 MW) (C-2); FRC supported with
two plasma guns and NBI (~ 4 MW, High Performance FRC (HPF) regime C-2); FRC supported
via plasma guns and high power NBI (10 MW) in C-2U1.



43'Y EPS Conference on Plasma Physics P5.043

experimental setup can be found in [3,4]. The application of negative electrostatic biasing of
the SOL plasma via 1-2 plasma guns (PGs [5-7]) placed in the divertor sections (at a distance
of £8.8 m from the machine midplane), and the application of Neutral Beam Heating (NBI)
with Pxgr ~ 4 MW) resulted in greatly improved FRC stability with respect to tilt modes and
n=2 rotational modes, and substantially increased life times. Increased performance
(indicated as HPF14 regime) has been achieved with increased magnetic field in the plasma
formation sections. A further dramatic improvement with #5> 8 ms has been achieved in
C-2U, using two plasma guns along with upgraded NBI power (Pxgr ~ 10 MW) as indicated
in Fig.1.

Figure 2 shows the concomitant improvement in global FRC energy confinement,
obtained via power balance analysis over a time period 1.5-3 ms (0.5-Ims and 0.5-1.5ms,
respectively, in the bias-only and one gun/NBI-supported cases). Compared to an unbiased
FRC, energy confinement is improving substantially with bias and NBI. A more significant
improvement is achieved with two PGs and NBI in the HPF-14 (High Performance FRC)
configuration, where the axial magnetic field in the FRC formation sections was increased to
improve contact of the SOL plasma with the biased plasma guns.

Figure 3 shows the turbulence wavenumber spectrum measured in the confined FRC core
(at /R=0.75-0.85, where R; is the separatrix flux radius), and in the SOL (at 7/R~=1.15-1.2),
vs. toroidal turbulence wavenumber. The fluctuation data reported here is acquired via
Doppler Backscattering (DBS [8,9]). DBS simultaneously measures the density fluctuation
level at a specific toroidal wavenumber for different plasma radii, both in the FRC core and
in the SOL. Collinear Gaussian beams are launched into the plasma at an oblique angle C in
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backscattered signals. An inverted toroidal wavenumber spectrum is measured in the closed

flux surface FRC core region, indicating clearly that ion-scale turbulence is substantially

reduced. Near-classical ion thermal energy confinement ( y, ~(1-2)x") is inferred from

1-D power balance analysis [12], in qualitative agreement with the absence of large-scale

core turbulence. In contrast, an exponential wave- number spectrum is observed in the SOL,

extending from k,p, >3 well into the electron mode range, k,0, <0.5). Linear, local
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Fig. 3 Toroidal wavenumber spectrum of
density fluctuations, measured via DBS. (a)
Density fluctuation level vs. normalized
toroidal wavenumbers k,p, and k,p, . in

the FRC core inside the separatrix, and (b)
and in the SOL (shots #29587-29610;
#29750- 29802). The DBS sensitivity limit is
indicated (blue-green bar).

(flux-tube)
simulations, using a modified version of the
GTC code [13-15] confirm that ion modes are

stable in the FRC core. No unstable modes

electrostatic gyrokinetic

(either drift waves with k; # 0 or interchange
modes with 4; = 0) have been found for
realistic values of the normalized radial
density gradient (R/L,<6) and realistic values
of the
temperature gradients [16]. The FRC core

normalized electron and ion
simulations suggest that lower-k modes are
absent due a combination of Finite Larmor
radius effects [17-19], the short field line
connection length in the (closed flux surface)
FRC core, and the magnetic field gradient
which increases with radius. In contrast,
for the FRC SOL
unstable drift-interchange modes for k,0:>1.5,
with still

mitigated/stable primarily via FLR effects.

simulations indicate

lower wavenumbers
The measured density fluctuations near the
separatrix and in the SOL exhibit a critical
density gradient (normalized by the null-field
radius R) [Figure 4(a-c)] roughly in agree-
ment with the linear instability threshold
calculated from GTC [Fig. 4(d)]. A lower
linear threshold is calculated for high
toroidal wavenumber, however the energy
density in the higher-k part of the spectrum is
substantially lower, and the associated radial
transport rates are expected to be lower. A

moderately large SOL critical gradient, as
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evidence from experi-

mentally measured wavenumber spectra and gyrokinetic simulations that large-scale, ion—
range modes are stable in the C-2/C-2U FRC core. This result, qualitatively in agreement
with transport analysis in C-2, is highly promising for FRC confinement. Further work is
needed to incorporate SOL/FRC core coupling into the gyrokinetic simulations, as well as to

perform nonlinear runs including electromagnetic effects.
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