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Divertors are required for handling the plasma particle and heat exhausts on the walls in
fusion plasmas. There are two basic options for the design of stellarator divertors: non-
resonant and resonant [P2.183, A. Punjabi and A. Boozer, 42™ EPS Conference on Plasma
Physics, Lisbon, Portugal, June 22-27, 2015]. In non-resonant divertors, external magnetic
fields produce a sharp edge where one of the two curvatures of the plasma surface becomes
singular along a line. Resonant perturbations produce islands and stochastic regions. The
resonant divertors are highly sensitive to the precise value of the rotational transform on the
plasma surface. Relatively simple methods are developed to study resonant divertors for
stellarators using the field line Hamiltonian. The surfaces that intercept the escaping plasma
can have different types of topologies including toroidal, cylindrical, and flat plane. The flat
intercepting plane is nonconformal to equilibrium magnetic topology. The effects of the
nonideal spiraling and diffusive transport processes on the footprints on the flat plane surfaces
are studied. This work is supported by the US DOE grants DE-FG02-01ER54624 and DE-
FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University.
This research used resources of the NERSC, supported by the Office of Science, US DOE,
under Contract No. DE-AC02-05CH11231.

Generally, there are two design options for stellarator divertor designs. The first,
dominated by magnetic islands as on W7-X, and second dominated by stochasticity as on
LHD. The two designs are based on different principles: islands on the plasma surface for
W7-X, called a resonant divertor, and the use of sharp edges on the quasiaxisymmetric
stellarator, called the nonresonant divertor [1]. The Hamiltonian equations for the field line

are dy,[dp = —81//p/89 and dO/dp = 81//[7/6% . Position vector for field lines is given by

}(yxl,é’,(p)zR(w1,6,¢);2(¢)+2(1//1,0,¢)2. The standard position vector is given by

R=R,(¢)+a\y,|v,cos0,Z=Z, (p)+a\y, [y, sin6. Here we investigate the resonant
divertor design option for stellarators with diffusing field lines. We use the NCSX parameters

[1]. The total Hamiltonian is v, (v,,6,¢) = v L(v)+ v ,(0.9) . The unperturbed Hamiltonian
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is JP (w,)=ay, +by,’. The perturbation is l/NIP (6’, go) = 5[cos(m]¢9 —n,¢)+cos(m,0 — nzgo)] .
The resonant map equations are ., =y, +kd[sin(m0,—ng,)+sin(m,0,—n,p,)],and
0.,=0+ k;(l//_ 1) Both forward and the backward map are used. Resonant perturbation

have modes (2,1)+(5,3) with amplitude = 10°. Both modes are locked with no radial
dependence. Footprints are calculated using continuous analogs of forward and backward
maps. Lengths of lines, Liapunov lengths, and footprints are calculated. The collecting
surfaces are the conformal tori. The safety factor, the equilibrium surfaces, and the phase

portrait are shown in Figs.1- 3.
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Fig. 1. Equilibrium safety Fig. 2. The equilibrium Fig. 3. Phase portrait for
factor for the NCSX. magnetic surfaces in the the resonant perturbation
NCSX generated by the (m,n)=(2,1)+(5,3)  with
map. the amplitude 6=10" in

the ¢=0 plane.

For diffusing field lines, the map equations are v, >y, Ay, ,and 6,, > 6,,. The £
sign is chosen at random with equal probability. Ay, is calculated from

Ay, = (O.9+0.2R j+l)Dd /'N,. Rj+; is a random number of uniform density in the range

(0,1]. D, is the average radial displacement per toroidal circuit. D, is varied from 1E-1 to 1E-
5. To calculate footprints from diffusive map equations, the last good surface is calculated and
a good surface inside the last good surface is calculated. Fig. 4a shows the Poincare surface of
section in the plane ¢=0 for the field line trajectories with resonant modes (2,1) + (5,3) of
amplitude 6=107. The last good surface passes through 7=0.93 and #=0 in the =0 plane. Fig.
4b shows an expanded view of Fig. 4a. A good surface inside the last good surface exists
passing through 7=0.88 and 6=0 in the plane ¢p=0. Fig. 4c shows the last good surface and the
good surface inside the last good surface. The good surface inside the last good surface is
made of 10 K points in the =0 plane. The good surface serves as the starting position of 10 K
field lines. The intersecting surface is the torus of radius 7=1. If a field line crosses the

intercepting surface, the continuous analog of the map is used to calculate the strike point. If



43'Y EPS Conference on Plasma Physics

the line crosses during the application of diffusion operator, simple algebra gives the strike
point. Lines are advanced for at most 10 K toroidal transits of the stellarator. If a field line
diffusing inwards arrives at a position » < ', the line is thrown away. For D;=1E-1 to 3E-2,
the footprints of the forward and backward lines are a helical loop; and for D;= 2E-2 to 3E-2,
the footprints are a helical curve. For D; <3E-3, no line strikes the intercepting torus. The
typical footprints are shown in Fig. 5. Fig. 5a shows the typical footprint with the structure of
a helical loop for D;~1E-1; and Fig. 5b shows the typical footprint with the structure of a
helical curve for D,~1E-2. The fraction of the 10 K lines starting on the good surface inside
the last good surface that strike the intercepting torus in 10 K toroidal transits is denoted by f;.
Fig. 6 shows f; as a function of D,. f; increases with D,. A third degree polynomial in D, gives
the best fit to the fi(D,;) data. The area of the footprint is normalized to the area of the
intercepting torus of the radius 7=1. The normalized area is denoted by 4. Fig. 7 shows the
area of the footprint as a function of D,. A cubic polynomial in D, gives the best fit to the
data. So the area A increases with D, as a cubic polynomial in D,. The distance traversed by a
field line before it strikes the intercepting torus is denoted by /. /; is normalized by the minor
radius a. The average length of field lines before they strike, denoted by </, as a function of
Dy is shown in Fig. 8. <[> scales as D;**®® for forward lines and as Dy >*** for the backward
lines. The shortening of the average strike length </> with increasing D, is very fast. The
average Liapunov lengths </;> for lines that strike the intercepting surface as function of D,
are shown in Fig. 9. The average Liapunov length decreases much faster as D, increases when
D;<2E-2 compared to when D,;>2E-2. The first region (D,<2E-2) is when the footprints have
the structure of a helical curve while the second region (D;>2E-2) is when the footprints have
the structure of a helical loop. An important finding is that for all the field lines whether
moving forward or backward or whether they strike the intercepting surface or not, the
average exponential separation is always more than 20 e-folds. This will have significant

physics implications for the physics of edge plasmas [2].
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Fig. 4. (a) Phase portrait of field lines in the plane ¢=0 from the perturbation (2,1)+(5,3) with amplitude 6=107,

(b) an expanded view of Fig. 4a showing the last good surface and a good surface passing through r=0.88, =0 in

the plane ¢=0, (c) the last good surface and the starting surface for 10 K field lines inside the last good surface in

the ¢=0 plane.

Fig. 5. (a) Footprints for the forward (red) and backward (green) lines

when D,~1E-1. Both the forward and backward footprints have the

structure of a helical loop. This structure is typical for D,=1E-1 to 3E-2,

(b) footprints when D,~1E-2. Both the forward and backward footprints

have the structure of a helical curve. This structure is typical for D,=2E-2

to 3E-3. For D,<3E-3, there are no footprints.
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Fig. 7. The normalized area of the
footprint, 4, on the intercepting
torus as a function of D,. The curve
through the data points is a cubic

polynomial fit.
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Fig. 8. The average length </>
traversed by field lines as a function
of D. <> scales as Dd™***® for
forward lines and as D;2* for the

backward lines.

0 L L

Fig. 6. The fraction f; of field lines
that strike the intercepting surface
as a function of D,. The curve
through the data points is a cubic

polynomial in Dy fit.
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Fig. 9. The average Liapunov
length <[> as a function of D, for
the lines that strike the intercepting

surface.
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