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Divertors are required for handling the plasma particle and heat exhausts on the walls in 

fusion plasmas. There are two basic options for the design of stellarator divertors: non-

resonant and resonant [P2.183, A. Punjabi and A. Boozer, 42nd EPS Conference on Plasma 

Physics, Lisbon, Portugal, June 22-27, 2015]. In non-resonant divertors, external magnetic 

fields produce a sharp edge where one of the two curvatures of the plasma surface becomes 

singular along a line. Resonant perturbations produce islands and stochastic regions. The 

resonant divertors are highly sensitive to the precise value of the rotational transform on the 

plasma surface. Relatively simple methods are developed to study resonant divertors for 

stellarators using the field line Hamiltonian. The surfaces that intercept the escaping plasma 

can have different types of topologies including toroidal, cylindrical, and flat plane. The flat 

intercepting plane is nonconformal to equilibrium magnetic topology. The effects of the 

nonideal spiraling and diffusive transport processes on the footprints on the flat plane surfaces 

are studied. This work is supported by the US DOE grants DE-FG02-01ER54624 and DE-

FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University. 

This research used resources of the NERSC, supported by the Office of Science, US DOE, 

under Contract No. DE-AC02-05CH11231. 

 Generally, there are two design options for stellarator divertor designs. The first, 

dominated by magnetic islands as on W7-X, and second dominated by stochasticity as on 

LHD. The two designs are based on different principles: islands on the plasma surface for 

W7-X, called a resonant divertor, and the use of sharp edges on the quasiaxisymmetric 

stellarator, called the nonresonant divertor [1]. The Hamiltonian equations for the field line 

are t pd d       and p td d      . Position vector for field lines is given by 

   , , ( , , ) ( ) ( , , )t t tx R R Z Z          


. The standard position vector is given by  

   cos , sin .t a t aa aR R a Z Z a           Here we investigate the resonant 

divertor design option for stellarators with diffusing field lines. We use the NCSX parameters 

[1]. The total Hamiltonian is       , , ,p pp t t          . The unperturbed Hamiltonian 

43rd EPS Conference on Plasma Physics P5.044



is 2( )P t t ta b     . The perturbation is     1 1 2 2, cos( ) cos( )P m n m n           . 

The resonant map equations are 1 1 1 2 2[sin( ) sin( )],j j j j j jk m n m n            and 

1 1( )j j jk      . Both forward and the backward map are used. Resonant perturbation 

have modes (2,1)+(5,3) with amplitude = 10-3. Both modes are locked with no radial 

dependence. Footprints are calculated using continuous analogs of forward and backward 

maps. Lengths of lines, Liapunov lengths, and footprints are calculated. The collecting 

surfaces are the conformal tori. The safety factor, the equilibrium surfaces, and the phase 

portrait are shown in Figs.1- 3. 

 

Fig. 1. Equilibrium safety 

factor for the NCSX. 

Fig. 2. The equilibrium 

magnetic surfaces in the 

NCSX generated by the 

map. 

Fig. 3. Phase portrait for 

the resonant perturbation 

(m,n)=(2,1)+(5,3) with 

the amplitude δ=10-3 in 

the φ=0 plane. 

 

For diffusing field lines, the map equations are 1 1 1j j j       , and 1 1j j   .  The   

sign is chosen at random with equal probability. 1j   is calculated from 

 1 10.9 0.2 /j j d pR D N     . Rj+1 is a random number of uniform density in the range 

(0,1]. Dd is the average radial displacement per toroidal circuit. Dd is varied from 1E-1 to 1E-

5. To calculate footprints from diffusive map equations, the last good surface is calculated and 

a good surface inside the last good surface is calculated. Fig. 4a shows the Poincare surface of 

section in the plane φ=0 for the field line trajectories with resonant modes (2,1) + (5,3) of 

amplitude δ=10-3. The last good surface passes through r=0.93 and θ=0 in the φ=0 plane. Fig. 

4b shows an expanded view of Fig. 4a. A good surface inside the last good surface exists 

passing through r=0.88 and θ=0 in the plane φ=0. Fig. 4c shows the last good surface and the 

good surface inside the last good surface. The good surface inside the last good surface is 

made of 10 K points in the φ=0 plane. The good surface serves as the starting position of 10 K 

field lines. The intersecting surface is the torus of radius r=1. If a field line crosses the 

intercepting surface, the continuous analog of the map is used to calculate the strike point. If 
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the line crosses during the application of diffusion operator, simple algebra gives the strike 

point. Lines are advanced for at most 10 K toroidal transits of the stellarator. If a field line 

diffusing inwards arrives at a position r < ½, the line is thrown away. For Dd =1E-1 to 3E-2, 

the footprints of the forward and backward lines are a helical loop; and for Dd = 2E-2 to 3E-2, 

the footprints are a helical curve. For Dd <3E-3, no line strikes the intercepting torus. The 

typical footprints are shown in Fig. 5. Fig. 5a shows the typical footprint with the structure of 

a helical loop for Dd=1E-1; and Fig. 5b shows the typical footprint with the structure of a 

helical curve for Dd=1E-2. The fraction of the 10 K lines starting on the good surface inside 

the last good surface that strike the intercepting torus in 10 K toroidal transits is denoted by fs. 

Fig. 6 shows fs as a function of Dd. fs increases with Dd. A third degree polynomial in Dd gives 

the best fit to the fs(Dd) data. The area of the footprint is normalized to the area of the 

intercepting torus of the radius r=1. The normalized area is denoted by A. Fig. 7 shows the 

area of the footprint as a function of Dd. A cubic polynomial in Dd gives the best fit to the 

data. So the area A increases with Dd as a cubic polynomial in Dd. The distance traversed by a 

field line before it strikes the intercepting torus is denoted by ls. ls is normalized by the minor 

radius a. The average length of field lines before they strike, denoted by <ls>, as a function of 

Dd is shown in Fig. 8. <ls> scales as Dd
-28.88 for forward lines and as Dd

-28.44 for the backward 

lines. The shortening of the average strike length <ls> with increasing Dd is very fast. The 

average Liapunov lengths <lL> for lines that strike the intercepting surface as function of Dd 

are shown in Fig. 9. The average Liapunov length decreases much faster as Dd increases when 

Dd <2E-2 compared to when Dd ≥2E-2. The first region (Dd <2E-2) is when the footprints have 

the structure of a helical curve while the second region (Dd >2E-2) is when the footprints have 

the structure of a helical loop. An important finding is that for all the field lines whether 

moving forward or backward or whether they strike the intercepting surface or not, the 

average exponential separation is always more than 20 e-folds. This will have significant 

physics implications for the physics of edge plasmas [2]. 
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Fig. 4. (a) Phase portrait of field lines in the plane φ=0 from the perturbation (2,1)+(5,3) with amplitude δ=10-3, 

(b) an expanded view of Fig. 4a showing the last good surface and a good surface passing through r=0.88, θ=0 in 

the plane φ=0, (c) the last good surface and the starting surface for 10 K field lines inside the last good surface in 

the φ=0 plane. 

Fig. 5. (a) Footprints for the forward (red) and backward (green) lines 

when Dd=1E-1. Both the forward and backward footprints have the 

structure of a helical loop. This structure is typical for Dd=1E-1 to 3E-2, 

(b) footprints when Dd=1E-2. Both the forward and backward footprints 

have the structure of a helical curve. This structure is typical for Dd =2E-2 

to 3E-3. For Dd <3E-3, there are no footprints. 

Fig. 6. The fraction fs of field lines 

that strike the intercepting surface 

as a function of Dd. The curve 

through the data points is a cubic 

polynomial in Dd fit. 

Fig. 7. The normalized area of the 

footprint, A, on the intercepting 

torus as a function of Dd. The curve 

through the data points is a cubic 

polynomial fit. 

Fig. 8. The average length <ls> 

traversed by field lines as a function 

of D. <ls> scales as Dd-28.88 for 

forward lines and as Dd
-28.44 for the 

backward lines. 

Fig. 9. The average Liapunov 

length <lL> as a function of Dd for 

the lines that strike the intercepting 

surface.  
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