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ABSTRACT: The equilibrium field lines Hamiltonian for the simple map [1] is modified by 

replacing the cubic canonical momentum term to a quartic. This results in changing the 

topology of the separatrix from open and unbounded to closed and compact. The new map is 

the symmetric quartic map (SQM) [2]. Parameters in the generating function of the SQM are 

chosen such that the height, width, elongation, and the poloidal flux inside the separatrix for 

the SQM are same as in the simple map. The map parameter k of the SQM is used to represent 

the magnetic perturbation as in the Standard Map [3]. The homoclinic tangle of the separatrix 

is calculated for different values of the map parameter using the forward and the backward 

symplectic maps. The purpose is to investigate what role the topology of the separatrix plays 

in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants 

DE-FG02-01ER54624, DE-FG02-04ER54793. This research used resources of the NERSC, 

supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231. 

 Magnetic field lines are the trajectories of a 1½ degree of freedom Hamiltonians. 

 Plasmas in tokamaks are confined in regions where the magnetic field lines form closed 

toroidal surfaces. These surfaces are bounded by a separatrix, and outside the separatrix the 

magnetic field lines and the plasma flow to special regions of the walls called divertors.   Both 

the confinement of the plasma and the feasibility of divertors are sensitive to the behavior of 

the magnetic field lines near the separatrix in the presence of non-axisymmetric magnetic 

perturbations.  Separatrix manifold forms homoclinic tangle to preserve the symplectic 

invariant and topological neighborhood as the manifold evolves in canonical time. At a 

homoclinic point, four manifolds join together; the two incoming stable separatrix manifolds, 

and the two outgoing unstable separatrix manifolds. The stable manifold MS leading to and the 

unstable manifold MU emanating from the hyperbolic point have extremely irregular behavior. 

This is because these two manifolds cannot intersect themselves but the unstable manifold MU 

can intersect the stable manifold MS at homoclinic points. Between each homoclinic point and 

the hyperbolic fixed point, there are an infinite number of homoclinic points. Thus the stable 

manifold MS and the unstable manifold MU form an extremely complex network called the 

homoclinic tangle [4,5]. For manifolds connected to neighboring hyperbolic points, these 
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structures are called heteroclinic tangle. In equilibrium, the axisymmetric separatrix manifold 

is degenerate, and the stable and unstable manifolds coincide. The magnetic field in toroidal 

confinement schemes can be expressed as   [2,6]  

where χ is a poloidal magnetic flux contained inside a magnetic surface and it plays the role of 

Hamiltonian, θ is a poloidal angle and plays the role of generalized coordinate, ψ is a toroidal 

magnetic flux inside a surface and plays the role of generalized momentum, and φ is a toroidal 

angle and plays the role of generalized time. There are three sets of canonical coordinates for 

magnetic field line trajectories in tokamaks; magnetic, natural, and physical. Physical 

coordinates are (x,y,φ) where x=rcos(θ), y=rsin(θ) for φ=constant; and r is the radial distance 

from magnetic axis. Natural coordinates (NCC) are (ψ,θ,φ) where ψ=B0r2/2 where B0 is the 

magnetic field on magnetic axis, and θ=tan-1(y/x) [7]. NCC can be mapped to physical 

coordinates. Physical coordinates give the position in real physical space. The most efficient 

way to study the homoclinic tangle of separatrix is to utilize a symplectic map [5]. 

 The simple map [8] is the simplest map that has the magnetic topology of a single-null 

divertor tokamak. The separatrix and the open surfaces of the simple map have an open, non-

compact topology. On the other hand, the separatrix and the open surfaces of the symmetric 

quartic map (SQM) [9] have a closed and compact topology. The symmetric quartic map is 

the simplest map that has the magnetic topology of a single-null divertor tokamak with a 

closed and compact topology as contrasted with the simple map. Here we calculate the 

homoclinic tangle of the separatrix of the SQM using the map parameter k of the SQM to 

represent the magnetic asymmetries as is done for the Standard Map [10]. The long term goal 

of this work is to assess the effects of closed and open topologies of the separatrix on the 

homoclinic tangles in divertor tokamaks. For this purpose the coefficients of the generating 

function of the SQM are chosen such that the height, width, and the poloidal flux inside the 

separatrix are same as in the simple map. Under these conditions, the generating function for 

the SQM in NCC is  
3 22( , ) ( ) ( ) ( ) .S a b cψ θ θ ψ θ ψ θ ψ= + +   

Here ( ) ( )θθ 2
12
5 sin1+=a , ( ) ( )θθ 3

81
128 sin−=b  and ( ) ( )θθ 4

243
128 sin=c .  The map 

equations are then given by  

( )
n

nn
nn

S
k

θ
θψ

ψψ
∂

∂
−= +

+

,1
1 ,   

( )
1

1
1

,

+

+
+ ∂

∂
+=

n

nn
nn

S
k

ψ
θψ

θθ  and  1 .n n kϕ ϕ+ = +   

The map parameter k represents the magnetic asymmetries. For the backward map, the θ-

equation is first solved for θn, and then the ψ-equation is solved for ψn. When the separatrix 
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manifold is mapped forward and backward a single toroidal circuit, the forward and backward 

manifolds meet in the φ=0 plane and form homoclinic tangle. The ideal separatrices of the 

simple map and the SQM are shown in Fig. 1. Homoclinic tangles are shown in Figs. 2-6. 

 

 
 

Fig. 1. Ideal separatrix for the simple map and the 

symmetric quartic map. 

Fig. 2. Homoclinic tangle of the SQM separatrix for 

k=2π/360 after a single toroidal circuit in the φ=0 plane. 

 

  

Fig. 3. Homoclinic tangle of the SQM separatrix for 

k=2π/180 after a single toroidal circuit in the φ=0 plane. 

Fig. 4. Homoclinic tangle of the SQM separatrix for 

k=2π/90 after a single toroidal circuit in the φ=0 

plane. 
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Fig. 5. Homoclinic tangle of the SQM separatrix for 

k=2π/45 after a single toroidal circuit in the φ=0 plane. 

Fig. 6. Homoclinic tangle of the SQM separatrix for 

k=2π/18 after a single toroidal circuit in the φ=0 

plane. 
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