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ABSTRACT: The equilibrium field lines Hamiltonian for the simple map [1] is modified by
replacing the cubic canonical momentum term to a quartic. This results in changing the
topology of the separatrix from open and unbounded to closed and compact. The new map is
the symmetric quartic map (SQM) [2]. Parameters in the generating function of the SQM are
chosen such that the height, width, elongation, and the poloidal flux inside the separatrix for
the SQM are same as in the simple map. The map parameter & of the SQM is used to represent
the magnetic perturbation as in the Standard Map [3]. The homoclinic tangle of the separatrix
is calculated for different values of the map parameter using the forward and the backward
symplectic maps. The purpose is to investigate what role the topology of the separatrix plays
in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants
DE-FG02-01ER54624, DE-FG02-04ER54793. This research used resources of the NERSC,
supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231.
Magnetic field lines are the trajectories of a 12 degree of freedom Hamiltonians.
Plasmas in tokamaks are confined in regions where the magnetic field lines form closed
toroidal surfaces. These surfaces are bounded by a separatrix, and outside the separatrix the
magnetic field lines and the plasma flow to special regions of the walls called divertors. Both
the confinement of the plasma and the feasibility of divertors are sensitive to the behavior of
the magnetic field lines near the separatrix in the presence of non-axisymmetric magnetic
perturbations. Separatrix manifold forms homoclinic tangle to preserve the symplectic
invariant and topological neighborhood as the manifold evolves in canonical time. At a
homoclinic point, four manifolds join together; the two incoming stable separatrix manifolds,
and the two outgoing unstable separatrix manifolds. The stable manifold M leading to and the
unstable manifold M" emanating from the hyperbolic point have extremely irregular behavior.
This is because these two manifolds cannot intersect themselves but the unstable manifold M
can intersect the stable manifold M°® at homoclinic points. Between each homoclinic point and
the hyperbolic fixed point, there are an infinite number of homoclinic points. Thus the stable
manifold M° and the unstable manifold MY form an extremely complex network called the

homoclinic tangle [4,5]. For manifolds connected to neighboring hyperbolic points, these
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structures are called heteroclinic tangle. In equilibrium, the axisymmetric separatrix manifold

is degenerate, and the stable and unstable manifolds coincide. The magnetic field in toroidal

confinement schemes can be expressed as B = Vi XVE + Ve X Vy(8, @) [2,0]

where y is a poloidal magnetic flux contained inside a magnetic surface and it plays the role of
Hamiltonian, 4 is a poloidal angle and plays the role of generalized coordinate, y is a toroidal
magnetic flux inside a surface and plays the role of generalized momentum, and ¢ is a toroidal
angle and plays the role of generalized time. There are three sets of canonical coordinates for
magnetic field line trajectories in tokamaks; magnetic, natural, and physical. Physical
coordinates are (x,y,p) where x=rcos(6), y=rsin(d) for p=constant; and r is the radial distance
from magnetic axis. Natural coordinates (NCC) are (,0,9) where y=By"/2 where By is the
magnetic field on magnetic axis, and f=tan”'(y/x) [7]. NCC can be mapped to physical
coordinates. Physical coordinates give the position in real physical space. The most efficient
way to study the homoclinic tangle of separatrix is to utilize a symplectic map [5].

The simple map [8] is the simplest map that has the magnetic topology of a single-null
divertor tokamak. The separatrix and the open surfaces of the simple map have an open, non-
compact topology. On the other hand, the separatrix and the open surfaces of the symmetric
quartic map (SQM) [9] have a closed and compact topology. The symmetric quartic map is
the simplest map that has the magnetic topology of a single-null divertor tokamak with a
closed and compact topology as contrasted with the simple map. Here we calculate the
homoclinic tangle of the separatrix of the SQM using the map parameter k of the SQM to
represent the magnetic asymmetries as is done for the Standard Map [10]. The long term goal
of this work is to assess the effects of closed and open topologies of the separatrix on the
homoclinic tangles in divertor tokamaks. For this purpose the coefficients of the generating
function of the SQM are chosen such that the height, width, and the poloidal flux inside the
separatrix are same as in the simple map. Under these conditions, the generating function for

the SQM in NCC is
S.0)=a@w +bOW " +cOW.
Here a(0)=1+3sin’(0), b(0)=-'2sin’(9) and c(0)=1%sin*(9). The map

243

equations are then given by

aS(lr//nH’Hn) 9 1:0 +kaS(l//n+l,9n)

b

and =@ +k.
aen al//n+1 ¢n+l §0n

wn+l = ‘//n _k

The map parameter k represents the magnetic asymmetries. For the backward map, the 6-

equation is first solved for 6,, and then the w-equation is solved for y,. When the separatrix
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manifold is mapped forward and backward a single toroidal circuit, the forward and backward
manifolds meet in the p=0 plane and form homoclinic tangle. The ideal separatrices of the

simple map and the SQM are shown in Fig. 1. Homoclinic tangles are shown in Figs. 2-6.
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Fig. 1. Ideal separatrix for the simple map and the Fig. 2. Homoclinic tangle of the SQM separatrix for
symmetric quartic map. k=2m/360 after a single toroidal circuit in the ¢=0 plane.
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Fig. 3. Homoclinic tangle of the SQM separatrix for Fig. 4. Homoclinic tangle of the SQM separatrix for

k=2m/180 after a single toroidal circuit in the =0 plane. k=2m/90 after a single toroidal circuit in the ¢=0

plane.
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Fig. 5. Homoclinic tangle of the SQM separatrix for Fig. 6. Homoclinic tangle of the SQM separatrix for

k=2m/45 after a single toroidal circuit in the =0 plane. =~ k=2n/18 after a single toroidal circuit in the =0

plane.
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