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Introduction

We develop efficient numerical algorithms and full-F gyrofluid models for seeded filament

convection in the scrape-off-layer of magnetically confined fusion plasmas. We investigate co-

ordinate systems that are aligned with the magnetic flux surfaces. We successfully implemented

a near conformal and an orthogonal grid. The solution of a general elliptic equation, which was

discretized with the local discontinuous Galerkin methods, converges with superconvergent or-

der. On the other side, we study a fully nonlinear three-dimensional full-F gyrofluid model in a

simple slab magnetic geometry. We include particle source terms to account for losses through

the sheath. The literature [1, 2] proposes to also use an effective drag in the velocity equation.

However, we show that this term leads to an unpractical energy sink/source in the energy con-

servation equation. We propose to disregard the drag term in the velocity equation and show

that the gyrofluid energy subtracted by a suitable background term is still conserved.

Grid generation

The general problem is to derive a curvilinear coordinate system (x, y) that covers the region

bounded by two flux surfaces ψ(R,Z), where (R, Z) are cylindrical coordinates. Coordinate

lines must align with the magnetic flux surfaces ψ at least at the boundary. This ensures that

field lines do not intersect the boundary of the computational domain, which is advantageous

for the computation of parallel derivatives as in Reference [3]. We recover the near conformal

grid proposed by Reference [4] with the properties
√

g−1 = gxx = f (ψ)2 (∇ψ)2 and gyy =(
(gxx)2 +(gxy)2)/gxx. Here, f (ψ) is a flux-function used to normalize the poloidal coordinate

y. This grid is nearly conformal in the sense that the so-called conformal ratio Rc = gyy/gxx is

close to unity.

On the other hand we can also construct orthogonal coordinates with gxy = 0, gxx = f 2(∇ψ)2,

gyy = g2(∇ψ)2 and
√

g−1 = f g(∇ψ)2. We show both grids in Figure 1. As expected the near

conformal grid distributes cells more evenly across the domain and exhibits less deformation

when compared to the orthogonal grid. However, only the orthogonal grid can easily handle

Neumann boundary condition since these define the derivative perpendicular to the boundary.

We define ∇⊥ :=−êϕ × êϕ ×∇ and the general elliptic equation (cf. polarisation equation in
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Figure 1: Conformal ratio Rc−1 for a near conformal grid (left) and orthogonal grid (right) with equal

number of grid points P= 3, Nx = 8, Ny = 40. The conformal grid distributes the cells more evenly across

the domain.

the next Section)

∇ · (χ∇⊥ f ) =
1
√

g
[∂x(
√

gχ(gxx
∂x f +gxy

∂y f ))+∂y(
√

gχ(gyx
∂x f +gyy

∂y f ))] = ρ (1)

We use this equation to test the quality of our meshes in Table 1 with the help of our library

FELTOR (www.github.com/feltor-dev/feltor). We notice that the solution converges with order

4 in the near conformal grid, although only order 3 can be expected from the 2nd order poly-

nomials. In the orthogonal grid the convergence rate deteriorates by 5% for higher resolutions.

Ny = 5Nx # iterations L2 error order # iterations L2 error order

conformal orthogonal

40 1115 1.43E-01 - 1054 1.54E-01 -

80 2029 8.86E-03 4.02 2093 9.68E-03 3.99

160 3799 5.52E-04 4.00 3798 6.54E-04 3.89

320 6844 3.47E-05 3.99 6076 4.63E-05 3.82

640 11670 2.19E-06 3.99 10186 3.42E-06 3.76

Table 1: Comparison of the near conformal grids.

We attribute this to the high conformal ratio. We note here that convergence stops for both grids

as soon as the X-point is included in the domain, which is due to the diverging volume element.
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Let us point out here that if the coordinate x is aligned to ψ then gxx = f 2(∇ψ)2 always vanishes

at the X-point and that therefore simulations in X-point regions should be treated very carefully.

Model equations in slab geometry

The simplest consistent geometry possible is a slab geometry. We take a Cartesian coordinate

system (x,y,z), in which the magnetic field takes the form B(x) = B0 (1+ x/R0)
−1 êz with the

major radius R0 and a reference magnetic field B0. We then have b̂bb = êz and vanishing curvature

κ = b̂bb ·∇b̂bb = 0. Furthermore, we have ∇‖ f ≡ b̂bb ·∇ f = ∂z f . The perpendicular drift velocity re-

duces to v⊥=
b̂bb×∇φ

B + T
q

b̂bb×∇ lnB
B with the electric potential φ . The gyrofluid equations for plasma

density ne, ion gyrocenter density Ni, electron parallel velocity ue and ion parallel gyrocenter

velocity Ui read

∂tne +∇ ·
(

neueb̂bb+neve
⊥

)
= Λne +Sn, (2a)

∂tNi +∇ ·
(

NiUib̂bb+Nivi
⊥

)
= ΛNi +Sn, (2b)

mene
(
∂tue +ue∇‖ue +ve

⊥ ·∇ue
)
=−Te∇‖ne + ene∇‖φ − ene,0η‖J‖+neΛue, (2c)

miNi
(
∂tUi +Ui∇‖Ui +vi

⊥ ·∇Ui
)
=−Ti∇‖Ni− eNi∇‖ψ + ene,0η‖J‖+NiΛUi, (2d)

with the reference density ne,0, the parallel current J‖= e(NiUi−neue) and the Spitzer resistivity

η‖ =
πe2√me

(4πε0)2T 3/2
e

lnλ . Equations (2) are closed with the polarisation equation

ne = ΓiNi +∇ ·
(

Ni

B2 ∇⊥φ

)
. (3)

The Λ terms contain (perpendicular) diffusive terms included for numerical stability, while the

source term Sn makes up for losses in the parallel direction through the sheath. Note that we not

include the effective drag term −(U/N)Sn [1, 2] in the velocity equations. This term does not

lead to a consistent energy theorem as discussed in the next section.

At the magnetic pre sheath entrance (se) we choose the following boundary conditions:

U se
i =±csi, use

e =±csi exp(−eφ/Te) (4)

with csi =
√

(Te +Ti)/mi = cs
√

1+ τ and τ = Ti/Te. The boundary condition for φ , ne and Ni

remain unspecified [2]. At the perpendicular boundaries we choose Dirichlet boundaries for N,

U and φ , i.e. Ne = Ni = Neq, Ue =Ui =Ueq, and φ = ψ = φeq

Source terms and energy theorem

The background equilibrium fields are chosen such that neq
e = Neq

i = Neq, ue =Ui =Ueq, and

φeq = ψeq, which results in Jeq
‖ = 0. The equilibrium fields have to fulfill the force balance.
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If we assume the time derivative of the equilibrium fields to vanish we immediately get ∇ ·(
b̂bb(NU)eq

)
= Sn and ∇‖

(1
2meU2

eq +Te lnNeq
)
= e∇‖φ . Enforcing force balance leads to

∇‖

(
1
2
(me +mi)U2

eq +(Te +Ti) lnNeq

)
= 0, (5)

which is different from [2] due to the effective drag term. The energy theorem is derived by

adding
[
T (1+ lnN)+qψ + 1

2mU2]∂tN and m
(
NU− (NU)eq

)
∂tU . Integration over the whole

volume and assuming boundary terms originating from the ∂tψ terms to vanish (which is true

if either φ or ∇φ vanishes at the perpendicular boundary) yields

∂t

∫
V

d3x

[
1
2

miNi

(
∇⊥φ

B

)2

+∑
s

(
T N lnN +

1
2

m
(
NU− (NU)eq

)
U
)]

∑
s

∫
dA · b̂bb

[(
NU− (NU)eq

)(
T (1+ lnN)+qψ +

1
2

mU2
)]

=

∑
s

∫
V

d3x
[(

T (1+ lnN)+qψ +
1
2

mU2
)

ΛN +(NU− (NU)eq)

(
ΛU +

qne,0η‖J‖
N

)]
, (6)

where we sum over the species s ∈ e, i. Here, we have neglected the small term

−
∫

V d3xm(NU)eqU∇ ·
(

b̂bb×∇φ

B

)
. Note that a velocity source term SU would appear in (6) on the

same footing as ΛU . However, a conserved energy can only be derived if SU can be written in

the form SU = ∇‖ f with an arbitrary function f .

Outlook

In the future we want to simulate seeded filaments in the slab geometry and investigate the

influence of the parallel resistivity on the transport properties. Further research aims to clarify

the influence of finite Larmor radius effects and the nonlinear polarization equation in three-

dimensional models as was already done for two-dimensional models [5, 6].
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