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Introduction

We develop efficient numerical algorithms and full-F gyrofluid models for seeded filament
convection in the scrape-off-layer of magnetically confined fusion plasmas. We investigate co-
ordinate systems that are aligned with the magnetic flux surfaces. We successfully implemented
a near conformal and an orthogonal grid. The solution of a general elliptic equation, which was
discretized with the local discontinuous Galerkin methods, converges with superconvergent or-
der. On the other side, we study a fully nonlinear three-dimensional full-F gyrofluid model in a
simple slab magnetic geometry. We include particle source terms to account for losses through
the sheath. The literature [1, 2] proposes to also use an effective drag in the velocity equation.
However, we show that this term leads to an unpractical energy sink/source in the energy con-
servation equation. We propose to disregard the drag term in the velocity equation and show

that the gyrofluid energy subtracted by a suitable background term is still conserved.

Grid generation

The general problem is to derive a curvilinear coordinate system (x, y) that covers the region
bounded by two flux surfaces y(R,Z), where (R, Z) are cylindrical coordinates. Coordinate
lines must align with the magnetic flux surfaces y at least at the boundary. This ensures that
field lines do not intersect the boundary of the computational domain, which is advantageous
for the computation of parallel derivatives as in Reference [3]. We recover the near conformal
grid proposed by Reference [4] with the properties /g L= g% = f(y)2(Vy)? and g¥ =
((g%)*+(g7)?) /g™ Here, f(y) is a flux-function used to normalize the poloidal coordinate
y. This grid is nearly conformal in the sense that the so-called conformal ratio R, = g»” /g™ is
close to unity.

On the other hand we can also construct orthogonal coordinates with g% = 0, g™ = f2(Vy)?2,
g” =g*(Vy)? and /g 1 = fg(Vy)2. We show both grids in Figure 1. As expected the near
conformal grid distributes cells more evenly across the domain and exhibits less deformation
when compared to the orthogonal grid. However, only the orthogonal grid can easily handle
Neumann boundary condition since these define the derivative perpendicular to the boundary.

We define V| := —éy X éy x V and the general elliptic equation (cf. polarisation equation in
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Figure 1: Conformal ratio R, — 1 for a near conformal grid (left) and orthogonal grid (right) with equal
number of grid points P = 3, N, = 8, N, = 40. The conformal grid distributes the cells more evenly across

the domain.

the next Section)

V-(xVLif) = %[&(\@X(g’“ f +870 )+ (Vex (g of +87f))=p (1)

We use this equation to test the quality of our meshes in Table 1 with the help of our library
FELTOR (www.github.com/feltor-dev/feltor). We notice that the solution converges with order
4 in the near conformal grid, although only order 3 can be expected from the 2nd order poly-

nomials. In the orthogonal grid the convergence rate deteriorates by 5% for higher resolutions.

Ny = 5N, | #iterations ‘ L2 error ‘ order | # iterations ‘ L2 error ‘ order
conformal orthogonal
40 1115 1.43E-01 - 1054 1.54E-01 -
80 2029 8.86E-03 | 4.02 2093 9.68E-03 | 3.99
160 3799 5.52E-04 | 4.00 3798 6.54E-04 | 3.89
320 6844 347E-05 | 3.99 6076 4.63E-05 | 3.82
640 11670 2.19E-06 | 3.99 10186 3.42E-06 | 3.76

Table 1: Comparison of the near conformal grids.

We attribute this to the high conformal ratio. We note here that convergence stops for both grids

as soon as the X-point is included in the domain, which is due to the diverging volume element.
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Let us point out here that if the coordinate x is aligned to y then g™ = f2(Vy)? always vanishes

at the X-point and that therefore simulations in X-point regions should be treated very carefully.

Model equations in slab geometry

The simplest consistent geometry possible is a slab geometry. We take a Cartesian coordinate
system (x,y,z), in which the magnetic field takes the form B(x) = By (14x/Rg) "' é, with the
major radius Ry and a reference magnetic field By. We then have b= ¢, and vanishing curvature

k = b- Vb = 0. Furthermore, we have Vf= b-V f = d,f. The perpendicular drift velocity re-
b><V¢ +I T b><V1nB

ducestov | = with the electric potential ¢. The gyrofluid equations for plasma
density n,, ion gyrocenter den51ty N;, electron parallel velocity u, and ion parallel gyrocenter

velocity U; read

dn,+V- <neuei) eV ) = An, + S, (2a)

AN; + S, (2b)

)=
)=

Mol (a,ue +ue Ve + v - Vu,

AN+ V- (NiUb+ Ny,
) —T. VHne -l—eneVH(p — en,. 0n||JH +neAy,, (2¢)
m;N; (8IU —|—UVHU —|—Vl VU) = —TVHN —eNVHlV—i—ene ()T]HJH + NiAy,, (2d)

with the reference density 7, o, the parallel current J, 1= e(N;U; —n.u,) and the Spitzer resistivity

n = (4?: ;/73 7 InA. Equations (2) are closed with the polarisation equation

N;
Ne = FiNl' + V. (EVL(])) . (3)

The A terms contain (perpendicular) diffusive terms included for numerical stability, while the
source term S, makes up for losses in the parallel direction through the sheath. Note that we not
include the effective drag term — (U/N) S, [1, 2] in the velocity equations. This term does not
lead to a consistent energy theorem as discussed in the next section.

At the magnetic pre sheath entrance (se) we choose the following boundary conditions:
U = tcgi, ul = tcsiexp(—ed/T,) 4)

with ¢5; = \/ (T, +T;) /mj = c¢s/1+ T and © = T;/T,. The boundary condition for ¢, n, and N;
remain unspecified [2]. At the perpendicular boundaries we choose Dirichlet boundaries for N,
Uand ¢,i.e. No =N; = Noy, U = U; = Uy, and ¢ = Y = ¢y
Source terms and energy theorem

The background equilibrium fields are chosen such that ng? = N;? = Ny, u, = U; = U,, and

Peqg = Weq.» Which results in Jﬁq = 0. The equilibrium fields have to fulfill the force balance.
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If we assume the time derivative of the equilibrium fields to vanish we immediately get V -
(B(N U )eq> =Syand V| (%meUezq +T, lnNeq) = eV ¢. Enforcing force balance leads to
1

which is different from [2] due to the effective drag term. The energy theorem is derived by
adding [T(1+1InN)+qy + 3mU?] ;N and m (NU — (NU),q) 9;U. Integration over the whole
volume and assuming boundary terms originating from the d; ¥ terms to vanish (which is true

if either ¢ or V¢ vanishes at the perpendicular boundary) yields
1 V.oo\? 1
o /V d3x lim,N,- (?‘P) + ; <TN1nN+ 7m (NU — (NU)y) U)

;/dA-E {(NU — (NU)eq) (T(l +InN) +qy + %mUz)} _

oM/
Zs:/vd3x KT(I +1InN) +qy + %mUz) AN+ (NU — (NU )¢ (AU + %)} . (6)

where we sum over the species s € e,i. Here, we have neglected the small term
— [y Bxm(NU),,UV - (@) . Note that a velocity source term Sy would appear in (6) on the
same footing as Ay. However, a conserved energy can only be derived if Sy can be written in

the form Sy = V| f with an arbitrary function f.

Outlook

In the future we want to simulate seeded filaments in the slab geometry and investigate the
influence of the parallel resistivity on the transport properties. Further research aims to clarify
the influence of finite Larmor radius effects and the nonlinear polarization equation in three-

dimensional models as was already done for two-dimensional models [5, 6].
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