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Introduction

The nonlinear growth of neoclassical tearing modes (NTMs) in tokamaks is commonly dis-

cussed in the framework of the generalized Rutherford equation (GRE) [1, 2]. We perform a

theoretical / numerical validation of the GRE by means of numerical simulations implement-

ing the set of 2D reduced MHD equations for the helical magnetic flux ψ and the potential

ϕ [3]. The code uses finite differences in the radial directionand a Fourier decomposition in

the periodic poloidal direction. This choice of numerical method allows radial boundary con-

ditions for the flux to be set by the step in the logarithmic derivatives over the simulated radial

domain[−L : +L] of each Fourier componentk in accordance with the tearing stability param-

eters∆′
k,BC: i.e. ψ ′

k(±L)/ψk(±L) = ±0.5∆′
k,BC. The corresponding boundary condition for the

dominant Fourier harmonic of the potential is obtained in accordance with linear ideal MHD,

which should be valid outside the island region. The code focusses on the nonlinear dynamics

in the narrow layer in the poloidal plane of a tokamak around the resonant surfacers including

the magnetic island. In this layer the dynamics are expectedto be well approximated by the

2D reduced MHD equations (se Chapter 2.4 of [4]). The equilibrium helical flux is represented

by its Taylor series around the resonant surface,ψeq(x) = ∑n≥2(x
n/n!)ψ(n)

eq , wherex = r− rs.

When only the leading ordern = 2 term is taken into account, the code reproduces both the

linear and the nonlinear Rutherford phase in close correspondence to the theoretical expecta-

tions [3]. In this contribution we analyze the nonlinear saturation of a classical tearing mode,

and the growth and suppression by electron cyclotron current drive (ECCD) of a neoclassical

tearing mode (NTM).

Saturation of a classical tearing mode

When a fourth order term is included in the Taylor expansion of the equilibrium helical flux,

ψeq(x)=
1
2x2ψ(2)

eq + 1
24x4ψ(4)

eq , the linear tearing stability index∆′
0 is no-longer determined solely

by the boundary condition, but obtains a contribution from the fourth order term:

∆′
k,0 = ∆′

k,BC−2L
ψ(4)

eq

ψ(2)
eq

(1)
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whereL is the radial half width of the simulation box. As a result, the mode can be unstable even

when the boundary condition specifies∆′
k,BC < 0. This allows to study the nonlinear saturation

of a classical tearing mode. Escande and Ottaviani have shown that in this case the Rutherford

equation becomes

g1
dw
dt

= η
(

∆′
0+αw

)

(2)

whereg1 ≡ 0.82, andα ≡ 0.41ψ(4)
eq /ψ(2)

eq .

Figure 1 shows the results of a calculation with our 2D reduced MHD code for the following

parameters: equilibrium helical fluxψ(2)
eq = −5×105 s−1 andψ(4)

eq = 1.2×108 m−2s−1, resis-

tivity η = 0.01 m2/s, viscosityν = 5×10−8 m2/s, poloidal scale lengthky = 1 m−1, and radial

half width of the simulation boxL = 0.02 m. The boundary condition for the dominant mode is

given by∆′
k=1,BC =−6.6 m−1. With these parameters the Alvén timeτA = 1/|ψ(2)

eq |=2×10−6 s

and the resistive timeτr = 1/k2
yη = 102 s, giving a Lundquist number ofS ≡ τr/τA = 5×107.

The linear growth of the mode in the simulations is measured at 14.3 s−1, which is consistent

with the theoretical value ofγ = 0.55(∆′
0)

4/5η3/5(kψ(2)
eq )

2/5 = 15.7 s−1. The nonlinear growth

and saturation of the mode are described well by Eq. (2). In particular the saturated island size

of 3.1 cm obtained from the code corresponds well to the predicted saturated island size of

wsat=−∆′
0/α = 3.0 cm.

Growth and suppression of a neoclassical tearing mode [6]

Noninductive current perturbations lead to modification ofOhm’s law and thereby affect the

dynamics of tearing modes. One such current perturbation isthe annihilation of the neoclassical

bootstrap current densityJbs inside the magnetic island, which is responsible for destabilization

of neoclassical tearing modes (NTMs). Another contribution comes from the ECCD that is

applied for the suppression of NTMs. In this case the Rutherford equation is generalized to [7]

g1
dw
dt

= η
(

∆′
0+∆′

bs+∆′
ECCD

)

, (3)

where the last two terms on the right hand side represent the effect due to the missing bootstrap

current and the ECCD, respectively.

We performed simulations of NTM growth and suppression by ECCD, which were reported

previously in [6]. The plasma parameters were identical to those given above except thatψ(4)
eq =

0 and∆′
k=1,BC = −1 m−1. An NTM is triggered at a finite island size of 0.5 cm. The pertur-

bation to the bootstrap current inside the island is taken tobe δ jbs = −6630 s−1. Note that

the model assumes that the bootstrap current is annihilatedover the entire island, and conse-

quently does not model the partial annihilation expected for small island sizes [8]. When the
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NTM reaches an island size of 3 cm, ECCD is switched on with a maximum driven current

density ofJcd= 15000 s−1 and centered exactly at the resonant surfacexcd= 0 with a Gaussian

profile width of wcd = 1 cm. Two cases are simulated: one for CW ECCD and the other for

modulated ECCD with a duty cycle of 50% centered around the O-point phase of the magnetic

island. With∆′
0 given by the boundary condition, the initial growth phase ofthe mode allows

us to benchmark the bootstrap term∆′
bs in the GRE, while to second phase with ECCD is then

used to benchmark the∆′
ECCD term. In figure 2 we compare the results of the simulations with

analytical expressions for these terms given by [9, 10]. Excellent agreement is found between

the 2D code simulations and the analytical predictions of the GRE. In the literature sometimes

an additional termδ∆′(JECCD) is added to the Rutherford equation in order to describe the effect

of the ECCD on the equilibrium current density and thereby onthe mode stability. As shown by

[6] this effect is already encompassed in∆′
ECCD. Figure 2 also shows the results of calculations

in which only thek = 0 or k = 1 components of the current density perturbations are taken

into account. Whereas∆′
bs and∆′

ECCD are generally believed to represent the effect of only the

helicalk = 1 component of the current perturbation, these results showthat∆′
bs and∆′

ECCD also

include the effect of the poloidally averagedk = 0 component of the current perturbation. Ex-

cept for the modulated ECCD case, thek = 0 component is even seen to be responsible for the

dominant effect.
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Figure 1: Growth and saturation of a classical tearing mode.The parameters are given in the
main text. (a) The island width as a function of time. The blueline indicates the predicted
saturated island size according to [5]. (b) The normalized island growth as a function of island
width. The blue curve indicates the nonlinear growth according to equation (2).
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Figure 2: Growth and suppression by ECCD of an NTM. The parameters are given in the main
text. (a) The island width as a function of time. (b)∆′

bs as a function of island width. (c) and
(d) ∆′

ECCD as a function of island width for CW and modulated ECCD, respectively. The dotted
blue curves in (b,c,d) indicate the theoretical expectations according to [9, 10].
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