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Introduction

The XTOR-2F code [1] simulates the 3D dynamics of full bi-fluid MHD instabilities in toka-

mak plasmas. The initial conditions are given by the CHEASE equilibrium code [2]. A free-

boundary version of XTOR-2F has been developed. First, the CHEASE equilibrium, which is

limited to closed nested poloidal magnetic flux surfaces, was extended by fitting the magnetic

potential at the CHEASE computation domain boundary with a set of external poloidal coils.

A thin resistive wall was also added in the computational domain, thus permitting the magnetic

field diffusion through the wall. The boundary conditions use Green functions to construct a

transfer matrix relating the normal and tangential components of the magnetic field outside the

wall with the inside solution. Simulations are shown for axisymmetric vertical instabilities and

n = 1/m = 2 external kinks, and compared with predictions by large aspect ratio ideal MHD

theoretical predictions.

Fig. 1: Poloidal magnetic flux
of a free boundary equilibrium
extending a CHEASE equilib-
rium outside ψp (blue line).

1. Free boundary equilibrium

The CHEASE equilibrium code solves the Grad-Shafranov

equation with an infinite conducting wall boundary condition

at the plasma surface. To extend it, the virtual casing principle

[3] is applied. The currents in a set of poloidal coils are evalu-

ated with toroidal Green functions and are adjusted such that the

poloidal magnetic flux ψp is constant at the CHEASE plasma

boundary. This gives an under-determined linear system solved

using Tikhonov regularization min(‖Ax−b‖2 + ‖Γ x‖2), where

Γ is a regularization factor. Fig. 1 shows the poloidal magnetic

flux of a free-boundary MHD equilibrium, the thick blue line is

the CHEASE equilibrium plasma boundary ψp, and the thick red

line is the resistive wall. In the following, the zone between ψp

and the resistive wall will be labeled "SOL", and the one outside

the wall "vacuum".
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2. Resistive wall

A thin resistive wall model is used. The magnetic field normal to the wall surface is equal

inside and outside the wall, Br
SOL = Br

vacuum ≡ Br
wall . The inside component is solution of the

full bi-fluid set of equation solved by XTOR-2F. For every toroidal mode number n, the tan-

gential vacuum magnetic field component is linked to the normal one using regularized Green

functions by means of a linear system of equations. Here, the corresponding matrices Zn, are

computed with the GRIN code [4].

For a given toroidal mode number n > 0, Bvacuum
θ

= ∂θ

(
ZnBwall

r
)

and Bvacuum
φ

= ∂φ (ZnBwall
r ).

This allows to compute the normal derivatives across the wall, (∂rBθ )wall ∼
Bvacuum

θ
−BSOL

θ

δwall
and

(∂rBφ )wall ∼
Bvacuum

φ
−BSOL

φ

δwall
, where δwall is the wall thickness. Therefore, poloidal and toroidal

currents in the wall are jθ
wall = D

(
∂φ Br−∂rBφ

)
wall and jφ

wall = D(∂rBθ −∂θ Br)wall , respec-

tively. D is the Jacobian of the XTOR-2F discretization mesh. These currents govern the mag-

netic field diffusion through the resistive wall, ∂tBr
wall =−ηwD(∂θ jφ wall−∂φ jθ wall) during the

time evolution of the system (ηw is the wall resistivity).

The n = 0 mode is handled separately. Instead of the normal magnetic field component Br
wall ,

the poloidal magnetic flux at the wall ψ is used as variable through ∂tψ =−ηw jφ wall . Its normal

derivative satisfies ∂rψ =
(
Zn=0)−1

ψ . From which we compute the magnetic field radial and

poloidal components Br
wall = D∂θ ψ and Bθ

vacuum = −D∂rψ , respectively. The toroidal compo-

nent of the magnetic field will evolve independently following ∂tB
φ

wall =−ηwD(∂r jθ wall−∂θ jr wall).

Fig.2.1: Linear growth rate γτa of n= 0 axisymmet-
ric mode with perfectly conducting wall boundary
conditions versus the wall position rw for an elon-
gated κ = 1.6 equilibrium with flat current profile.
Symbols are the XTOR-2F simulation results.

Fig.2.2: Linear growth rate γτa of n= 0 axisymmet-
ric mode with resistive wall boundary conditions
versus the resistive wall time τw. Wall position is set
to rw = 1.3. Symbols are the XTOR-2F simulation
results. The dashed line is the scaling γτa = 1/Fτw.

3. Axisymmetric modes

An MHD equilibrium with elongation κ > 1 triggers an axisymmetric mode instability (i.e.

a plasma vertical displacement). This mode can be stabilized by a perfectly conducting wall
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sufficiently close to the plasma surface. The criterion for stability is F = κ+1
κ−1

(
1
rw

)2
− 1 > 0,

which corresponds to a threshold value for the wall distance of rc
w =

√
κ+1
κ−1 [5]. Fig.2.1 shows

the linear growth rates of the axisymmetric mode for a flat current profile with κ = 1.6. The

measured threshold is rw = 2, near the theoretical value rc
w = 2.08. In experiments the wall is

resistive, an instability will develop even if the wall distance is bellow the perfectly conducting

wall stability threshold rw < rc
w. Fig.2.2 shows the linear growth rates of the axisymmetric

mode with a resistive wall for a flat current profile with κ = 1.6 and rw = 1.3. The computed

growth rate scale with the inverse of the resistive wall time γτa = 1/Fτw for large τw [6].

4. External Kinks and Resistive Wall Modes (RWM’s)

The external kink MHD instability, when studied theoretically in ideal MHD in the large

aspect ratio limit, gives the following ODE [7]:

d
dr

{
r3

((
n+

m
q

)2

−ω
2

)
dξ

dr

}
−
(
m2−1

)
r

{(
n+

m
q

)2

−ω
2

}
ξ = 0 (1)

with boundary condition
(

rξ
′

ξ

)
r=a

=

{
ω2−n2 + m2

q2 −
(

n+ m
q

)2
| m | Λ

}
, where r = a is the

plasma-SOL interface.

For perfectly conducting and resistive wall boundary conditions, Λ(τw = ∞) =
1+( a

b)
2|m|

1−( a
b)

2|m| and

Λ(τw) =
2|m|−

(
1+( a

b)
−2|m|)

iτwω

2|m|−
(

1−( a
b)
−2|m|)

iτwω

, respectively, where τw = τaδwrw/ηw is the wall resistive time.

The numerical solution of this ODE gives the instability normal mode ξ for a given q-profile,.

The associated eigenvalue is equal to the normalized growth rate ω = γτa. In order to approach

this asymptotic model with XTOR-2F, the physical parameters of the simulation need to be fine

tuned. The profiles are set constant with a high contrast between the plasma and the SOL for

the density (nplasma = 1 and nSOL = 10−3) and for the Lundquist number (Splasma = 1012 and

SSOL = 1). This is done to approach the ideal MHD behavior in the plasma and a true vacuum

in the SOL. The inverse aspect ratio is set to a small value ε = 0.1. The wall distance is set to

rw = 1.2. The Fig.2 shows good agreement between XTOR-2F simulations (red diamonds) and

the above theoretical model (blue line) for the external kinks and RWM’s. In Fig.2.1 growth

rates are presented in the unstable range of the safety factor qa ≡ qr=a for the ideal n = 1/m = 2

external kink mode. In Fig.2.2, qa = 1.6. In that case, the external kink is stable with a perfectly

conducting wall in Fig.2.1 but unstable with a resistive wall. Fig.2.2 shows RWM growth rates

as a function of the wall resistive time τw for both the theory and the XTOR-2F simulations.
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Two regimes are observed: the resistive regime τw/τa >> 1 where the growth rates scale linearly

with τw and the inertial regime τw/τa << 1 where the growth rates are constant.

Fig.2.1: Linear growth rate γτa of n = 1/m = 2
external kink mode with perfectly conducting wall
boundary conditions versus qa.

Fig.2.2: Linear growth rate γτa of n = 1/m = 2
RWM mode versus the resistive wall time τw with
qa = 1.6 in Fig.2.1.

Conclusion

A prolongation of CHEASE equilibrium solution to a free boundary equilibrium and a resis-

tive wall boundary condition have been implemented in XTOR-2F extended MHD code. These

new equilibrium and boundary conditions have been tested for two external instabilities: the

n = 0 axisymmetric mode and the n = 1/m = 2 external kink and its associated RWM. The lin-

ear growth rates are in good agreement with large aspect ratio theoretical results. These results

need proper fine tuning of the XTOR-2F simulation parameters in order to approach the asymp-

totic models hypothesis. This benchmarks the code and allows now to address more complex

MHD instabilities. It is planed to investigate active feedback methods on the RWM stability as

well as peeling-ballooning modes and disruptions in the near future.
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