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Introduction

The XTOR-2F code [1] simulates the 3D dynamics of full bi-fluid MHD instabilities in toka-
mak plasmas. The initial conditions are given by the CHEASE equilibrium code [2]. A free-
boundary version of XTOR-2F has been developed. First, the CHEASE equilibrium, which is
limited to closed nested poloidal magnetic flux surfaces, was extended by fitting the magnetic
potential at the CHEASE computation domain boundary with a set of external poloidal coils.
A thin resistive wall was also added in the computational domain, thus permitting the magnetic
field diffusion through the wall. The boundary conditions use Green functions to construct a
transfer matrix relating the normal and tangential components of the magnetic field outside the
wall with the inside solution. Simulations are shown for axisymmetric vertical instabilities and
n=1/m =2 external kinks, and compared with predictions by large aspect ratio ideal MHD

theoretical predictions.

1. Free boundary equilibrium

The CHEASE equilibrium code solves the Grad-Shafranov
equation with an infinite conducting wall boundary condition
at the plasma surface. To extend it, the virtual casing principle
[3] is applied. The currents in a set of poloidal coils are evalu-
ated with toroidal Green functions and are adjusted such that the
poloidal magnetic flux y, is constant at the CHEASE plasma
boundary. This gives an under-determined linear system solved

using Tikhonov regularization min(||Ax — b||> + ||['x||*), where

I' is a regularization factor. Fig. 1 shows the poloidal magnetic
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flux of a free-boundary MHD equilibrium, the thick blue line is
Fig. 1: Poloidal magnetic flux
of a free boundary equilibrium
line is the resistive wall. In the following, the zone between ), extending a CHEASE equilib-
rium outside Y, (blue line).

the CHEASE equilibrium plasma boundary y,,, and the thick red

and the resistive wall will be labeled "SOL", and the one outside

the wall "vacuum".
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2. Resistive wall

A thin resistive wall model is used. The magnetic field normal to the wall surface is equal
inside and outside the wall, BS,; = B\,cm = B, The inside component is solution of the
full bi-fluid set of equation solved by XTOR-2F. For every toroidal mode number n, the tan-
gential vacuum magnetic field component is linked to the normal one using regularized Green
functions by means of a linear system of equations. Here, the corresponding matrices Z", are

computed with the GRIN code [4].

For a given toroidal mode number n > 0, By*“" = dp (Z"B)*"") and By**™ = dy (Z"By").
Bvacuum _BEOL

This allows to compute the normal derivatives across the wall, (d,Bg)ai; ~ and

6wa1 !
Bvacuum _ BS OL

(0rB¢)watl ~ 2 ¢ where 8,y is the wall thickness. Therefore, poloidal and toroidal

Oyl
currents in the wall are jga” =D (8¢Br — arB¢)Wa” and jf:all = D (0,Bg — d¢B;),,4» reSpeC-

tively. D is the Jacobian of the XTOR-2F discretization mesh. These currents govern the mag-
netic field diffusion through the resistive wall, d,B!, ;; = —MwD(96 j wait — 9p jowair) during the
time evolution of the system (7),, is the wall resistivity).

The n = 0 mode is handled separately. Instead of the normal magnetic field component B,
the poloidal magnetic flux at the wall y is used as variable through J; Y = —1),,jj yau1. Its normal
derivative satisfies d,y = (Z"ZO) ! Y. From which we compute the magnetic field radial and
poloidal components B, ,, = Ddgy and BY ... = —Dd,y, respectively. The toroidal compo-

nent of the magnetic field will evolve independently following 8;B3a 1 = —MwD (0 jowatt — 9 jrwall)-
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Fig.2.1: Linear growth rate Y7, of n =0 axisymmet-  Fig.2.2: Linear growth rate y7, of n = 0 axisymmet-
ric mode with perfectly conducting wall boundary ric mode with resistive wall boundary conditions
conditions versus the wall position r,, for an elon-  versus the resistive wall time 7,,. Wall position is set
gated ¥ = 1.6 equilibrium with flat current profile. to r,, = 1.3. Symbols are the XTOR-2F simulation
Symbols are the XTOR-2F simulation results. results. The dashed line is the scaling yt, = 1/F1,.

3. Axisymmetric modes
An MHD equilibrium with elongation k > 1 triggers an axisymmetric mode instability (i.e.

a plasma vertical displacement). This mode can be stabilized by a perfectly conducting wall
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sufficiently close to the plasma surface. The criterion for stability is F = X1 <i> —1>0,

Kk—1 \ry
which corresponds to a threshold value for the wall distance of r{, = % [5]. Fig.2.1 shows
the linear growth rates of the axisymmetric mode for a flat current profile with ¥ = 1.6. The
measured threshold is r,, = 2, near the theoretical value r, = 2.08. In experiments the wall is
resistive, an instability will develop even if the wall distance is bellow the perfectly conducting
wall stability threshold r,, < r{,. Fig.2.2 shows the linear growth rates of the axisymmetric
mode with a resistive wall for a flat current profile with Kk = 1.6 and r,, = 1.3. The computed

growth rate scale with the inverse of the resistive wall time Y7, = 1/F1,, for large 7, [6].
4. External Kinks and Resistive Wall Modes (RWM’s)

The external kink MHD instability, when studied theoretically in ideal MHD in the large

aspect ratio limit, gives the following ODE [7]:

%{r3<(n+§)2_w2)fl_f}_(mtl)r{<n+§)2—w2}é=o ()

’ 2
with boundary condition (%) = {(02 —n?+ ’;%2 — <n + %) | m | A}, where r = a is the
plasma-SOL interface. e

For perfectly conducting and resistive wall boundary conditions, A(7,, = o) = (T

2\m|—(1+(g)*2""‘>irww
A(Ty) = P

2ml—(1-(5) " )imso

The numerical solution of this ODE gives the instability normal mode & for a given g-profile,.

, respectively, where 1,, = 7,8,,r,,/1,, is the wall resistive time.

The associated eigenvalue is equal to the normalized growth rate ® = y7,. In order to approach
this asymptotic model with XTOR-2F, the physical parameters of the simulation need to be fine
tuned. The profiles are set constant with a high contrast between the plasma and the SOL for
the density (7pqsmq¢ = 1 and ngor = 1073) and for the Lundquist number (S ,/45ma = 102 and
Ssor = 1). This is done to approach the ideal MHD behavior in the plasma and a true vacuum
in the SOL. The inverse aspect ratio is set to a small value € = 0.1. The wall distance is set to
ry = 1.2. The Fig.2 shows good agreement between XTOR-2F simulations (red diamonds) and
the above theoretical model (blue line) for the external kinks and RWM’s. In Fig.2.1 growth
rates are presented in the unstable range of the safety factor g, = g,—, for the idealn =1/m =2
external kink mode. In Fig.2.2, g, = 1.6. In that case, the external kink is stable with a perfectly
conducting wall in Fig.2.1 but unstable with a resistive wall. Fig.2.2 shows RWM growth rates

as a function of the wall resistive time 7, for both the theory and the XTOR-2F simulations.
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Two regimes are observed: the resistive regime 7,,/7, >> 1 where the growth rates scale linearly

with 7,, and the inertial regime 7,,/7, << 1 where the growth rates are constant.
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Fig.2.1: Linear growth rate yt, of n = 1/m =2 Fig.2.2: Linear growth rate Y7, of n = 1/m =2
external kink mode with perfectly conducting wall RWM mode versus the resistive wall time 7,, with

boundary conditions versus ¢,. qq = 1.61in Fig.2.1.

Conclusion

A prolongation of CHEASE equilibrium solution to a free boundary equilibrium and a resis-

tive wall boundary condition have been implemented in XTOR-2F extended MHD code. These

new equilibrium and boundary conditions have been tested for two external instabilities: the

n =0 axisymmetric mode and the n = 1/m = 2 external kink and its associated RWM. The lin-

ear growth rates are in good agreement with large aspect ratio theoretical results. These results

need proper fine tuning of the XTOR-2F simulation parameters in order to approach the asymp-

totic models hypothesis. This benchmarks the code and allows now to address more complex

MHD instabilities. It is planed to investigate active feedback methods on the RWM stability as

well as peeling-ballooning modes and disruptions in the near future.
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