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Radial correlation reflectometry (RCR) utilizing simultaneous plasma probing by two 

microwave beams at slightly different frequencies incident normally upon plasma in the 

cutoff presence, and correlation analysis of the reflected signals have been used for plasma 

turbulence characterization in magnetic fusion devices since 90s [1, 2]. This diagnostic 

benefits from a relative technical simplicity, however the interpretation of the experimental 

data is complicated by contribution of small-angle-scattering off long-scale fluctuations 

leading at small turbulence level to substantial overestimation of its correlation length [3].  

One of approaches to cope with this problem is so called radial correlation Doppler 

reflectometry (RCDR), where benefits directly from suppression of the small-angle scattering 

component in the reflectometer signal, taking place at the oblique enough incidence of the 

probing wave onto the magnetic surface. This approach was justified in [4] where the 

expression for the critical incidence angle has been derived.  Unfortunately it appears to be 

dependent on a priori unknown turbulence correlation length, which complicates the RCDR 

experiment planning and interpretation. 

In the present paper based on analytical evaluation of scattering signal the turbulence spectra 

reconstruction procedure similar to the one developed in [5] and confirmed in [6] for RCR for 

arbitrary probing angle is proposed. The procedure is validated against the numerical analysis 

performed utilizing the reciprocity theorem for calculation of the RCDR signal. 

In theoretical analysis, linear regime of the probing wave scattering is assumed. Due to strong 

elongation of the drift-wave turbulence in respect to the magnetic field, O-mode 

backscattering described by Helmholtz equation is analyzed in 2D geometry: 
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Where nc=meω
2/4πe2 and q1,q2 stand for coordinates which are x,y in a slab geometry case 

and r,φ in case of cylindrical geometry. Based on the reciprocity theorem [7], the amplitude of 

the backscattering signal in the Born approximation can be represented as follows 
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where P  is the probing wave power across the unite length in magnetic field direction,  

 1 2, ,aE q q   is the probing wave amplitude at frequency   corresponding to the unit power 

launched through the receiving antenna into the unperturbed  1 2( , ) 0n q q  plasma, and Spol 

stands for the poloidal plasma cross-section. The probing wave electric field aE  here can be 

represented as a superposition of the partial waves emitted by the antenna and outer boundary 

conditions for them is given by antenna directivity diagram over poloidal wavenumber. This 

diagram is assumed to be Gaussian f(kpol,ω)=(2  ρ)1/2exp[-(kpol-Kω)ρ2/2] where kpol is 

poloidal wavenumber of the partial wave and Kω=ωsinϑ/c, while ϑ stands for antenna tilting 

angle with respect to magnetic surface. In case of slab geometry and linear density profile 

radial structure of partial wave is described by Airy function, whereas in case of cylindrical 

geometry solution of unperturbed Helmholtz equation in the WKB approximation can be 

used. Using Fourier representation for the density fluctuation δn(q1,q2) and performing 

integration over spatial variables in expression (2), in case of slab geometry and linear density 

profile, one can derive: 
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(3) 

Where l=(Lωc2/ω2)1/3 is the Airy scale, Lω
-1=∂ln n(x)/ ∂x|cutoff, and κ,q – radial and poloidal 

wavenumbers of density fluctuation component δnκ,q. In the case of cylinder geometry, 

amplitude of the scattering signal takes following form: 
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component of wave vector of probing wave; rc - tokamaks minor radius, rc(m) is the turning 

point; rst is the point of Bragg resonance, which is defined by relation km(rst)+k-q-m(rst)=|κ|; In 

the slab geometry limit, in case of κ<<2ω/c formula (4) coincides with formula (3). 

The normalized cross-correlation function of two scattering signals in slightly different 

frequency channels   and   reads as follows  
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Where      , <…> stands for statistical averaging over an ensemble of the 

fluctuations. Substituting expression (3) or (4) into (5), one can see that the formula for the 

CCF takes a form of Fourier transform in fluctuation radial wavenumber. Performing the 

inverse Fourier transformation one can reconstruct the turbulence radial wavenumber 

spectrum. The formula for such a reconstruction in the case of slab geometry takes a form 
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Where Δx=2LωΔω/ω. In the case of cylindrically symmetric plasma expression takes a form 
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To validate theoretical analysis, numerical modeling was performed in the case of slab 

geometry. For a given turbulence CCF <δn(x, y)δn(x’, y’)>= δn2exp(-(x-x’)2/lc
2-(y-y’)2/lc

2), 

CCF was calculated using formula (2), (5) and numerical solution of unperturbed eq. (1). 

Then reconstruction procedure was used. For the case of lc=0.4cm, ρ=1.6cm, Lω=12cm, and 

ϑ*=24° the scattering signal CCF can be seen on figure 1 while reconstructed CCF can be 

seen on Figure 2. Significant improvement of agreement after reconstruction can be noted, 

which validates suggested reconstruction method, but numerical validation in case of 

cylindrical symmetry is yet to be performed. 

  

Figure 1: The RCDR CCF. Blue - real part, red - 
imaginary part, black – absolute value, magenta - the 
turbulence CCF. 10   . 

Figure 2: The reconstructed turbulence CCF. Blue 
and red – real and imaginary parts of reconstructed 
CCF; magenta – initial turbulence CCF. 10   . 
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