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Radial correlation reflectometry (RCR) utilizing simultaneous plasma probing by two
microwave beams at slightly different frequencies incident normally upon plasma in the
cutoff presence, and correlation analysis of the reflected signals have been used for plasma
turbulence characterization in magnetic fusion devices since 90s [1, 2]. This diagnostic
benefits from a relative technical simplicity, however the interpretation of the experimental
data is complicated by contribution of small-angle-scattering off long-scale fluctuations

leading at small turbulence level to substantial overestimation of its correlation length [3].

One of approaches to cope with this problem is so called radial correlation Doppler
reflectometry (RCDR), where benefits directly from suppression of the small-angle scattering
component in the reflectometer signal, taking place at the oblique enough incidence of the
probing wave onto the magnetic surface. This approach was justified in [4] where the
expression for the critical incidence angle has been derived. Unfortunately it appears to be
dependent on a priori unknown turbulence correlation length, which complicates the RCDR

experiment planning and interpretation.

In the present paper based on analytical evaluation of scattering signal the turbulence spectra
reconstruction procedure similar to the one developed in [5] and confirmed in [6] for RCR for
arbitrary probing angle is proposed. The procedure is validated against the numerical analysis

performed utilizing the reciprocity theorem for calculation of the RCDR signal.

In theoretical analysis, linear regime of the probing wave scattering is assumed. Due to strong
elongation of the drift-wave turbulence in respect to the magnetic field, O-mode

backscattering described by Helmholtz equation is analyzed in 2D geometry:
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Where n.=m.w’/4re’ and q,,q, stand for coordinates which are x,y in a slab geometry case
and r,¢ in case of cylindrical geometry. Based on the reciprocity theorem [7], the amplitude of
the backscattering signal in the Born approximation can be represented as follows
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where P is the probing wave power across the unite length in magnetic field direction,

E, (ql,qz,a)) is the probing wave amplitude at frequency @ corresponding to the unit power
launched through the receiving antenna into the unperturbed (5n(ql,q2) :O) plasma, and S,

stands for the poloidal plasma cross-section. The probing wave electric field £, here can be

represented as a superposition of the partial waves emitted by the antenna and outer boundary
conditions for them is given by antenna directivity diagram over poloidal wavenumber. This
diagram is assumed to be Gaussian f{ky.,®)=(2z p)"*exp[-(kpo-Ko)p’/2] Where ko is
poloidal wavenumber of the partial wave and K,=wsin9/c, while 3 stands for antenna tilting
angle with respect to magnetic surface. In case of slab geometry and linear density profile
radial structure of partial wave is described by Airy function, whereas in case of cylindrical
geometry solution of unperturbed Helmholtz equation in the WKB approximation can be
used. Using Fourier representation for the density fluctuation on(g;,q,) and performing
integration over spatial variables in expression (2), in case of slab geometry and linear density

profile, one can derive:
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Where I=(L,c’/0’)"” is the Airy scale, L, '=8In n(x)/ ox|.up and x,q — radial and poloidal
wavenumbers of density fluctuation component on,,. In the case of cylinder geometry,

amplitude of the scattering signal takes following form:
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Where L@):(M—“’—Zi”(”)j_ k()= \/“’—22(1—’7(”)—4”;22‘ lis  radial

2r° ¢ dr n,
component of wave vector of probing wave; r. - tokamaks minor radius, r.(m) is the turning
point; 7y is the point of Bragg resonance, which is defined by relation &,,(rs)+k.q.m(rs)=|%|; In
the slab geometry limit, in case of k<<2w/c formula (4) coincides with formula (3).

The normalized cross-correlation function of two scattering signals in slightly different

frequency channels @ and @' reads as follows
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Where Aw=0'-w, <..> stands for statistical averaging over an ensemble of the
fluctuations. Substituting expression (3) or (4) into (5), one can see that the formula for the
CCF takes a form of Fourier transform in fluctuation radial wavenumber. Performing the
inverse Fourier transformation one can reconstruct the turbulence radial wavenumber

spectrum. The formula for such a reconstruction in the case of slab geometry takes a form
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Where Ax=2L,Aw/w. In the case of cylindrically symmetric plasma expression takes a form
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To validate theoretical analysis, numerical modeling was performed in the case of slab
geometry. For a given turbulence CCF <dn(x, y)on(x’, y’)>= on’exp(-(x-x )/ -(v-y ) /1),
CCF was calculated using formula (2), (5) and numerical solution of unperturbed eq. (1).
Then reconstruction procedure was used. For the case of [.=0.4cm, p=1.6¢m, L,=12cm, and
9*=24° the scattering signal CCF can be seen on figure 1 while reconstructed CCF can be
seen on Figure 2. Significant improvement of agreement after reconstruction can be noted,
which validates suggested reconstruction method, but numerical validation in case of

cylindrical symmetry is yet to be performed.
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Figure 1: The RCDR CCF. Blue - real part, red - Figure 2: The reconstructed turbulence CCF. Blue
imaginary part, black — absolute value, magenta - the and red — real and imaginary parts of reconstructed
turbulence CCF. 9=10°. CCF; magenta — initial turbulence CCF. 9=10°.
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