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Introduction

Acceleration of particles in plasmas is now of great interest thanks to plasma capability

of supporting electric fields orders of magnitude stronger than those in conventional radio-

frequency structures [1, 2]. One of studied schemes is laser driven plasma wakefield acceler-

ation (LWFA) in narrow capillaries. In this scheme, a short laser pulse propagates along the

capillary filled by the plasma and drives a high-amplitude Langmuir wave with the phase ve-

locity approximately equal to the light velocity c. The capillary prevents diffraction of the laser

pulse and extends the acceleration length either directly by reflecting the pulse from capillary

walls [3–7], or indirectly through a specific plasma profile inside [8].

The theory of wave propagation in metallic or ionized capillaries at conditions of interest

for the wakefield acceleration is incomplete yet. The classical waveguide theory [9] is not fully

applicable to these conditions, as is shown in Ref. [10]. Corrected attenuation rates are obtained

either with simplifying assumptions [10–12], or numerically with taking into account additional

effects [12, 13]. At the same time, there are experimental evidences that attenuation of short,

high-contrast laser pulses in metallic [14] or ionized [15] capillaries is low enough to study

narrow capillaries as an option for LWFA.

In this paper, we consider the structure of capillary modes in cylindrical capillaries and cal-

culate attenuation rates. We present exact solutions and analyze precision of often used approx-

imate solutions. The depth of study comes at the sacrifice of generality: we focus only at laser

and capillary parameters of interest for wakefield acceleration.

Circular capillaries

Consider a circular waveguide of the radius a with the relative dielectric permittivity ε = 1

inside and ε = εw for r ≥ a. Solving Maxwell equations in the cylindrical geometry for pertur-

bations of the form f (r)eikz−iωt+imφ and taking into account continuity of Eφ , Ez, Bφ , and Bz

at r = a yields [16]
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where κ
2
j = (−1) j(−εω2/c2 + k2), j = {1,2}, Jm(κ1a), Km(κ2a), J′m(κ1a), and K′

m(κ2a) are

Bessel function of the first kind, modified Bessel function, and their derivatives, respectively.

For solving equation (1) we need to specify εw. Both metals and quickly ionized solid walls

are usually characterized by the Drude formula [17]:

εw(ω) = 1+ i
ω2

pτ

ω(1− iωτ)
, (2)

where ω2
p = 4πnee2/m = 4πσ0/τ is the plasma frequency of conduction electrons, ne is their

density, e and m are electron charge and mass, σ0 is the conductivity, and τ is the electron

collision frequency in the medium. The formula (2) correctly describes reflection of short pow-

erful laser pulses from various materials which behave as a “universal plasma mirror” at high

intensities [18].

To be specific, consider solutions of Eq.(1) in the parameter area of discussed experiments on

LWFA [7, 14]. In particular, take the laser wavelength λ = 850 nm and the copper capillary of

the radius a∼ 15 µm. The electric field of the incident laser pulse has the same direction all over

the transverse cross-section, which corresponds to azimuthal modes with |m|= 1 in cylindrical

coordinates. The excited capillary modes must have the same azimuthal dependence, so we give

most attention to |m|= 1 modes.

Since a≫ λ , low-order waveguide modes are almost plane waves and similarly have k ≈ ω/c.

The copper at high frequencies is characterized by σ0 ≈ 1.6× 1017 s−1 and τ ≈ 1.3× 10−14 s.

[10] For these values, εw ≈ −30 + 1.1i, |εw| ≫ 1, κ2 ≫ ω/c ≫ 1/a, which means the

perturbation penetrates the walls a short distance. At this case, the Leontovich boundary condi-

tions [19] are commonly used:

Eφ = ζ Bz, Ez =−ζ Bφ , (3)

where ζ = 1/
√

εw is the surface impedance. Using the conditions (3) is equivalent to the large-

argument approximation for the modified Bessel functions, K′
m/Km ≈−1, approximating κ

2
2 by

−εω2/c2, and neglecting the ratio κ
2
1/κ

2
2 in the right-hand side of Eq. (1).

At high conductivity of the walls, there could be two small parameters in the problem: the

impedance |ζ | and the ratio κ1c/ω . Depending on the ratio of the two, solutions of Eq. (3) take

qualitatively different forms. If |ζ | ≪ κ1c/ω (very high conductivity), the problem reduces

to the classical result of waveguide theory [19]: there are two groups of modes, TM and TE

modes. The wave amplitude attenuates as e−αz with

α =
ωRe(ζ )

kac
, α =

cκ2
1Re(ζ )
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for TM and TE modes, respectively.

In the case |ζ | ≫ κ1c/ω , the solutions for m 6= 0 are circularly polarized waves [10]:

Jm±1(κ1a) = 0, ~B =±i~E, Er =±iEφ , α =
κ

2
1Re(ζ )

2k2a|ζ |2 . (5)

If m > 0, the solutions corresponding to the upper and lower signs in (5) are named L and R

modes, respectively [10]. Only R modes can be excited by a Gaussian pulse. As δ ≡ κ1c
|ζ |ω de-

creases, TMmn modes are continuously transformed into Rmn modes, where subscripts m and n

denote azimuthal and radial mode numbers [10].

Figure 1: (a) Attenuation rate for modes R11 or TM11 calculated from the classical formula (4) (“C”),

approximate expression (5) (“A”), and numerically solved Eq. (1) (“N”). The thin vertical line mark the

boundary between approximations (δ = 1), the dotted vertical line shows the considered parameter set.

(b) Ratio of attenuation rate obtained approximately to that obtained numerically for various R modes

and the baseline parameter set.
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Figure 2: Transverse electric fields for different modes

calculated from exact equations (1) (a), approximation

(5) (b), and classical approach (4) (c).

For the considered parameter set, the

condition |ζ | ≫ κ1c/ω is fulfilled, but

with no large margin even for the low-

est mode (R11) with κ1a ≈ 2.40483,

ζ ≈ 0.0032−0.18i, δ ∼ 0.12. This raises

the question of how precise the approx-

imate attenuation rate (5) is. To answer,

we compare the exact numerical solution

of Eq. (1) and its approximations for var-

ious ratios a/λ [Fig. 1(a)]. The approxi-

mate expression always underestimates at-

tenuation. Although the graphs are close,

this is the logarithmic scale, and the differ-

ence is quite noticeable. The approximate formula (5) is close to the exact solution only for
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the lowest order radial mode (the error about 20%). For higher order modes, the error is large

[Fig. 1(b)]. Curiously, the approximate expression is correct for R modes with n ∼ 7, for which

δ ∼ 1, and inequality |ζ | ≫ κ1c/ω is not valid.

The difference between exact and approximate solutions is also visible in the mode structure,

but for n > 1 only (Fig. 2). The lowest order modes R11 and TE11, which contain most of the

incident energy in corresponding limiting cases, look similarly. The main difference is that in

the limit δ ≪ 1 there is no electric field on the walls. For higher modes (second row in Fig. 2),

the exact solution contains features of both approximations: the field vectors are noncollinear,

as in TM modes, and the field vanishes at the walls, as (5) implies.

Conclusion

We have demonstrated the method of calculating the exact mode structure. The exact nu-

merical solution differs from approximate and standard solutions. The approximate solution

overestimates the length of laser pulse propagation in the parameter area of interest for LWFA.

Nevertheless, the damping rate is still order of magnitude smaller than obtained from standard

formulae of the classical waveguide theory. Properties of lowest order eigenmodes is acceptable

for LWFA.
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