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Abstract

The applicability of the first Born approximation to the description of plasma transport

properties is discussed. The influence of the electronic degeneration on the electrical con-

ductivity of the fully ionized plasma is investigated with the linear response theory in the

formulation of Zubarev, Lenard-Balescu-type collision integrals with dynamical screening

of the Coulomb interaction, the first Born approximation in the thermodynamic Green’s

functions technique. The values for correlation functions for electron-ion and electron-

electron scattering as functions of a degeneracy parameter ® = kg7 /EF in the region from

® > 1to ® =1 are obtained. The data for the electron-electron scattering contribution to

the conductivity are obtained through the Chebyshev polynomial expansion of the Fermi

distribution functions.

Motivation

It was found [1] that the electrical conductivity,
calculated both with the Boltzmann-statistic long-
wavelength asymptotic first Born approximation
and the multiparameter interpolation formula [2],
describe experimental data equally well for plasma
with parameters out of formal applicability of the
Born approximation (Figure 1). It is well-known
that the strong collisions approximation (the Spitzer
formula and its later modifications) describes exper-
imental data reasonably only with model values of
the Debye screening radius. There are no good pre-

liminary arguments for the choice of these values.

Some ambiguities of the theory
The Spitzer formula appears as a low-I" asymp-
totic limit of the ladder diagram summation (T-

matrix approximation) in the perturbation theory.
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Figure 1: The Coulomb part of the
reduced plasma electrical conductivity
from [1]. oFRR - the interpolation for-
mula, 63" - the first Born approxi-
mation, ok - experimental data, [ =
(¢2/AmeoksT)(4mn/3)'/3 - the coupling

constant
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So far as similar summation should be done simul-

taneously in the thermodynamic functions, we have

to start with the initial system of non-interacting free charged particles and hope to obtain real
observable densities of all particles in the system (including appeared bound states). So we have
to guess the right parameters of the Hamiltonian of non-interacting particles.

The second problem is the ladder diagram summation with a frequency dependent potential
(dynamical screening in electron-electron scattering). Usually it is replaced by the model static
(Debye) potential with the free parameter (Debye radius), which is assorted from the condition
of the coincidence of results of dynamical screening and the model static one in the first Born
approximation. After that we hope to have the similar compensation in the higher orders of the

perturbation theory.

The basic idea
e Consider a system of non-interacting electrons and a set of ions and atoms. Suppose that

as a result of the inclusion of interaction all particle densities are unchanged.

e So all the densities in the initial Hamiltonian have to be taken from the experimental
data and calculations have to be restricted with the only the lowest order terms of the

perturbation theory. The criterion is the conservation of particles densities.

Technical Description
Within the linear response theory in the formulation of Zubarev [3], transport properties are
expressed via force-force correlation functions [4, 5, 6]. The resulting expression for the con-

ductivity is

e? 0 Ny
O=——"—+| __ , (1
Q.det(d) No d
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N do dn ... dj

In (1) - (3) Q - the system volume, N,,;,,d, are correlation functions for the thermodynamic
equilibrium, N, - the number of electrons and 8 = (kBT)_l. The dimension of the matrix d
coincides with the number of moments in the corresponding relevant statistical operator (see

[3]). In the adiabatic limit we can omit the ion flux and obtain for Eq.(3)
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dnn = d;iqin + dyy + “4)
N — N I'(m+n+5/2) Im+n+1/2(ﬁﬂéd> (5)
e T(5/2) Lyp(Bud)
with I, (y) = F(v1+1) ({ ef,v;ljl - Fermi integrals, u/?- the ideal part of the electronic chemical
potential.

Correlation functions d,,;, (for electron-ion, electron-electron and electron-atom collisions)
are evaluated using thermodynamic Green’s functions. The diagram technique in the lowest
order of perturbation (the first Born approximation) gives for the Coulomb interaction V(q) =

2 (qZQSO)*I, screened due to the medium polarization, Lenard-Balescu collision integrals [7].

Treatment of collision integrals

Let di: = 0 (fully ionized plasma), Z;,, = 1,/ =1 1in (3).

In the adiabatic limit all 4%, reduce to one-dimensional Zyman-type integrals with a static
dielectric function and a static ion-ion structure factor.

In general, df;, reduce to 4-dimensional integral (for Boltzmann distribution functions in
Lenard-Balescu collision integrals - to 2-dimensional one). After using the Chebyshev poly-
nomial expansion of Fermi distribution functions we reduce d;,, to 2-dimensional integral in

the range u/? < 0 (approximately ® > 1). Here we use 3-order polynomial expansion. It gives

approximately 0.01 accuracy in the representation of the Fermi distribution function.

Results and discussion

As a consequence of a momentum conserva-
tion law, all 45 = d;j = 0. The first non-zero
electron-electron collision integral is d{{. In the
high-temperature low-density limit d{{ 56 =2,
in the high-degeneracy limit d{{ 86 =0, and it is

the case of Lorentz plasma. It is interesting to re-

trace the transition between these states.
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On Figure 2 the dependence of the ratio men- ’ g

tioned above on the degenerate parameter ® is A
Figure 2: The df{{/d{, ratio as the func-
shown. .
tion of the degeneracy parameter. 1 - ry =
As it seen from Figure 2, the contribution of
1.842(I®=5),2-r;=921(I'® = 1).
electron-electron scattering to the electrical conduc-

tivity decreases sharply near ® = 3, depending on I'.
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In order to ensure the smooth transition between

degenerate and non-degenerate states without the
knowledge of dy,, in the intermediate region of ©,

some authors ([8, 9]) postulated the coefficient R,

- the ratio of the real plasma electrical conductiv-

ity to those of the Lorentz plasma. Recently at-

tempts were made to calculate d{{ and R, with De- R @2’ Tx oo

bye screening [10] and to obtain their asymptotic

behaviour with dynamical screening [11]. On Fig- Figure 3: Re.-factor in different approxi-

mations. Rfe - from [8], ReFe - from [9], 1

-1y =1.842,2 - ry =9.21. Solid lines -

ure 3 the corresponding results are compared with

present ones.

The generalization of the method of d%¢, calcula- Present results, dotted lines - asymptotic

tions for any m and n is obvious. For u/? > 0 the values in 6-moment approximation [11],

forth integration for the reduction of the integral di- dashed lines - Debye screening [10].

mension is impossible. In this region it is suitable to

use the high-degeneracy representation of d;, [12, 13] for the construction of their continuation.
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