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Abstract

The applicability of the first Born approximation to the description of plasma transport

properties is discussed. The influence of the electronic degeneration on the electrical con-

ductivity of the fully ionized plasma is investigated with the linear response theory in the

formulation of Zubarev, Lenard-Balescu-type collision integrals with dynamical screening

of the Coulomb interaction, the first Born approximation in the thermodynamic Green’s

functions technique. The values for correlation functions for electron-ion and electron-

electron scattering as functions of a degeneracy parameter Θ = kBT/EF in the region from

Θ� 1 to Θ = 1 are obtained. The data for the electron-electron scattering contribution to

the conductivity are obtained through the Chebyshev polynomial expansion of the Fermi

distribution functions.

Motivation

Figure 1: The Coulomb part of the

reduced plasma electrical conductivity

from [1]. σERR - the interpolation for-

mula, σBorn - the first Born approxi-

mation, σK - experimental data, Γ =

(e2/4πε0kBT )(4πn/3)1/3 - the coupling

constant

.

It was found [1] that the electrical conductivity,

calculated both with the Boltzmann-statistic long-

wavelength asymptotic first Born approximation

and the multiparameter interpolation formula [2],

describe experimental data equally well for plasma

with parameters out of formal applicability of the

Born approximation (Figure 1). It is well-known

that the strong collisions approximation (the Spitzer

formula and its later modifications) describes exper-

imental data reasonably only with model values of

the Debye screening radius. There are no good pre-

liminary arguments for the choice of these values.

Some ambiguities of the theory

The Spitzer formula appears as a low-Γ asymp-

totic limit of the ladder diagram summation (T-

matrix approximation) in the perturbation theory.
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So far as similar summation should be done simul-

taneously in the thermodynamic functions, we have

to start with the initial system of non-interacting free charged particles and hope to obtain real

observable densities of all particles in the system (including appeared bound states). So we have

to guess the right parameters of the Hamiltonian of non-interacting particles.

The second problem is the ladder diagram summation with a frequency dependent potential

(dynamical screening in electron-electron scattering). Usually it is replaced by the model static

(Debye) potential with the free parameter (Debye radius), which is assorted from the condition

of the coincidence of results of dynamical screening and the model static one in the first Born

approximation. After that we hope to have the similar compensation in the higher orders of the

perturbation theory.

The basic idea

• Consider a system of non-interacting electrons and a set of ions and atoms. Suppose that

as a result of the inclusion of interaction all particle densities are unchanged.

• So all the densities in the initial Hamiltonian have to be taken from the experimental

data and calculations have to be restricted with the only the lowest order terms of the

perturbation theory. The criterion is the conservation of particles densities.

Technical Description

Within the linear response theory in the formulation of Zubarev [3], transport properties are

expressed via force-force correlation functions [4, 5, 6]. The resulting expression for the con-

ductivity is

σ =− e2

Ωdet(d)

∣∣∣∣∣∣ 0 N0

N0 d

∣∣∣∣∣∣ , (1)

Nn =
(

Nn0 Nn1 . . . Nnl

)
, (2)

Nn =


Nn0

Nn1
...

Nnl

 ,d =


d00 d01 . . . d0l

d10 d11 . . . d1l
...

... . . . ...

dl0 dl1 . . . dll

 . (3)

In (1) - (3) Ω - the system volume, Nmn,dmn are correlation functions for the thermodynamic

equilibrium, Ne - the number of electrons and β = (kBT )−1. The dimension of the matrix d

coincides with the number of moments in the corresponding relevant statistical operator (see

[3]). In the adiabatic limit we can omit the ion flux and obtain for Eq.(3)
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dmn = dei
mn +dee

mn +dea
mn, (4)

Nmn = Ne
Γ(m+n+5/2)

Γ(5/2)
Im+n+1/2(β µ id

e )

I1/2(β µ id
e )

, (5)

with Iν(y) = 1
Γ(ν+1)

∞∫
0

xν dx
ex−y+1 - Fermi integrals, µ id

e - the ideal part of the electronic chemical

potential.

Correlation functions dmn (for electron-ion, electron-electron and electron-atom collisions)

are evaluated using thermodynamic Green’s functions. The diagram technique in the lowest

order of perturbation (the first Born approximation) gives for the Coulomb interaction V (q) =

e2(q2Ωε0)
−1, screened due to the medium polarization, Lenard-Balescu collision integrals [7].

Treatment of collision integrals

Let dea
mn = 0 (fully ionized plasma), Zion = 1, l = 1 in (3).

In the adiabatic limit all dei
mn reduce to one-dimensional Zyman-type integrals with a static

dielectric function and a static ion-ion structure factor.

In general, dee
mn reduce to 4-dimensional integral (for Boltzmann distribution functions in

Lenard-Balescu collision integrals - to 2-dimensional one). After using the Chebyshev poly-

nomial expansion of Fermi distribution functions we reduce dee
mn to 2-dimensional integral in

the range µ id
e < 0 (approximately Θ > 1). Here we use 3-order polynomial expansion. It gives

approximately 0.01 accuracy in the representation of the Fermi distribution function.

Results and discussion

Figure 2: The dee
11/dei

00 ratio as the func-

tion of the degeneracy parameter. 1 - rs =

1.842(ΓΘ = 5), 2 - rs = 9.21(ΓΘ = 1).

As a consequence of a momentum conserva-

tion law, all dee
0n = dee

n0 = 0. The first non-zero

electron-electron collision integral is dee
11. In the

high-temperature low-density limit dee
11/dei

00 =
√

2,

in the high-degeneracy limit dee
11/dei

00 = 0, and it is

the case of Lorentz plasma. It is interesting to re-

trace the transition between these states.

On Figure 2 the dependence of the ratio men-

tioned above on the degenerate parameter Θ is

shown.

As it seen from Figure 2, the contribution of

electron-electron scattering to the electrical conduc-

tivity decreases sharply near Θ = 3, depending on Γ.
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Figure 3: Ree-factor in different approxi-

mations. RS
ee - from [8], RF

ee - from [9], 1

- rs = 1.842, 2 - rs = 9.21. Solid lines -

present results, dotted lines - asymptotic

values in 6-moment approximation [11],

dashed lines - Debye screening [10].

In order to ensure the smooth transition between

degenerate and non-degenerate states without the

knowledge of dee
mn in the intermediate region of Θ,

some authors ([8, 9]) postulated the coefficient Ree

- the ratio of the real plasma electrical conductiv-

ity to those of the Lorentz plasma. Recently at-

tempts were made to calculate dee
11 and Ree with De-

bye screening [10] and to obtain their asymptotic

behaviour with dynamical screening [11]. On Fig-

ure 3 the corresponding results are compared with

present ones.

The generalization of the method of dee
mn calcula-

tions for any m and n is obvious. For µ id
e > 0 the

forth integration for the reduction of the integral di-

mension is impossible. In this region it is suitable to

use the high-degeneracy representation of dee
mn [12, 13] for the construction of their continuation.
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