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Introduction

Contraction of gas discharge is one of the most well-known phenomenon in gas
discharge physics. The fundamental problem of contraction is actively discussed in literature
recently. The biggest progress in this problem may be achieved considering an inert gas model
because of the energy term simplicity. A complete description of experimental and theoretical
knowledge of contraction in inert gases has been made in review [1]. A big number of full-scale
contraction models were developed in the last decades. However, all these models use
traditional approach of effective lifetime by Holstein for the description of resonant atoms. This
approximation corresponds to a local balance of resonant atoms and does not consider
resonance radiation trapping. In this work a previously proposed method [2] of accurate
description of the resonance radiation transport for solving self - consistent problems is applied
to a model of contracted discharge in an inert gas and the main goal of the paper is to reveal the

role of resonance radiation transport in formation of different plasma parameters.

Semianalytical contraction model

A simple qualitative three - level semianalytical model of discharge contraction, based
on joint solution of Boltzmann kinetic equation for an electron energy distribution function
(EEDF), differential balance equation of charged particles, integral balance equation of
resonant atoms and an equation for a maintaining conditions of discharge current, may be
considered. The main mechanism of contraction belongs to the ionization non-linearity as a
function of the electron concentration, which is related to the competition of the electron-atom
and the electron-electron collisions. Boltzmann kinetic equation, accounting elastic electron —
atom, electron-electron collisions and inelastic electron — atom collisions, can be written as:
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where e - electron charge, E - electric intensity, v - electron velocity, m - electron mass, M -

atomic mass, v, (v)- elastic electron — atom collisions frequency, v, (v)- elastic electron —
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electron collisions frequency, fy(v)- isotropic component of EEDF, S*(fo) - operator of

inelastic collision, KT, - electron temperature.

Since the operator S*( fy) contains a total excitation cross section, by multiplying both
. 0 1/2 . -3/2 . . . o . .
sides of (1) by 47rj. (2e)"“m™"“de integrating it from excitation energy &, to infinity in
gEX

energy scale ¢, one will obtain a frequency of total inelastic electron — atom collisions:
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Given that the excitation cross sections of lower metastable and resonant states make the major
contribution to the total excitation cross section in inert gases, it can be supposed that equation
(2) could be used to describe the process of population of these lower states. In case of low

average electron energy in comparison with the excitation energy &, , an approximation of
black wall, assuming a quick exponential decline of the EEDF near the ¢, , can be used to find
a solution of the Boltzmann equation for the isotropic component of EEDF f,(v). Using the

solution for the isotropic component of EEDF in the area of elastic collisions, which dominate
in the formation of EEDF in atomic gases, equation (2) will transform to a simple analytical

expression and will be determined as a particles flux through the excitation threshold:
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where the frequency v, can be approximated as v, ~ (8/ Eex for a heavy Argon atom.

A simple three — level energy model consisting of the ground state, a resonant state and
an ionization state is considered. The resonant state is populated by an excitation from the

ground state with frequency v, and by a recombination /" from the ionization state and
depopulated by a stepwise ionization with frequency W; and by spontaneous decay with an

output of resonance radiation with probability A. The ionization state is depopulated by an
ambipolar diffusion of charged particles and the recombination to the resonance level. An
integral balance equation for resonant atoms and a differential balance equation with boundary
conditions for charged particles can be written in the form:
ey (Te, E,Ng )+ I'(T,,ng ) = N, (NW, (T, E,ng )+ G(r, N, ) 4)
N, (NW; (T, E,ng ) = I'(Te, e )— D, (T, JAng (1) : )
VNelr—0=0, Ng|;_g=0



43'Y EPS Conference on Plasma Physics P5.117

where Nngis an electron concentration, R - discharge tube radius, D, - ambipolar diffusion
coefficient, G(r, N, )- integral resonance radiation transport operator:
G(r,N) = AN, (r) = [ AN (r)K (r = r)d®r, (6)

and K(]r — r|) is a kernel of the integral operator G(r,N,).

Holstein approximation and precise description of resonance radiation transport
Traditional approach in the description of resonance radiation transport is related to an

assumption that the resonant atoms density N, (r)is close to a fundamental radiation mode and
decreases much slower than the kernel KQr — r'|)of the integral operator (6). Such assumption
makes possible to take N, (r) as a constant in (6) within the fall of the kernel. It leads to an
expression G(r)= N, (r)Ags , where Ay is an inverse effective lifetime of the resonant state

given by Holstein. In this case initial equations (4), (5) will be rewritten as an algebraic
equation for resonant atoms and a differential equation for electrons:
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If the radial distribution of resonant atoms drastically differs from the fundamental radiation
mode, Holstein effective lifetime approximation goes beyond its applicability. In this case
resonant radiation transport should be taken into account precisely. In paper [2] a precise
method of joint solution of integral equation (4) and differential equation (5) with an accurate
consideration of resonance radiation transport is described. It is proposed to divide the whole

plasma volume V'into a large number of parts AV which are small compared to ¥, and, within

this volumes, the concentration of resonant atoms can be considered constant. Then, equations
(4), (5) takes the form of a system of linear algebraic equations:
Da (E)z I.akj Ne (rj )J+ N r (rk )Wsi (Te B Ne (rk ))_ F(Te 1Ne (rk )) =0 (9)
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j
where matrix with elements by; takes into account appearance or the resonance atoms outside

the excitation zone due to radiation transport and the differential operator in (5) is replaced by a

matrix with elements ay; using finite differences.
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Results and conclusion

Comparison of solutions, obtained using the traditional approximation of the effective
lifetime (7), (8) and with the correct calculation of resonance radiation transfer (9), (10), will
reveal the influence of resonance radiation transport on the formation of plasma parameters.

Results are presented in figure 1 in case of PR =100 Torr*cm, where P is pressure.
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Fig. 1. Dependence of the electron concentration and resonant atoms concentration (a) at the discharge axis,
effective cross section of the current filament (b) and electric intensity with electron temperature (c) on current,

calculated in two approximations: solid dots- exact solution, open dots- approximation of the effective lifetime.

As can be seen in fig. 1 at low currents, when the radial distributions are close to the
fundamental modes of diffusion and radiation problems, the solutions within the frameworks of
effective lifetimes yield sufficiently accurate results. With a growth of current, when the radial
distributions start to differ from the fundamental modes, shortcomings of the local solution
become evident. This fact illustrates the effect of higher diffusion and radiation modes in

formation of plasma parameters. Radiation transport leads to a broadening of an effective cross

section of discharge current S =IR(ne(r)rdr)/(ne(O)R2) (fig 1b) and reduces electron
o

concentration at the axis (fig 1a) as well as resonant atoms concentration at the axis (fig 1a). As
a result, a critical discharge current is shifted towards larger values. The influence of radiation

transport on electric intensity and electron temperature is insignificant (fig. 1c). The discharge
current equation can be written as i = 2zR%eh, En, (0) - Sgf » Where b, - electron mobility.

As a result a simple three - level semianalytical model shows a good applicability of
Holstein approximation while the radial distributions of different plasma components are close
to fundamental diffusion and radiation modes. In contracted discharge a notable difference
between two approaches is demonstrated. These facts show the influence of higher diffusion

and radiation modes.
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