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Introduction 

Contraction of gas discharge is one of the most well-known phenomenon in gas 

discharge physics. The fundamental problem of contraction is actively discussed in literature 

recently. The biggest progress in this problem may be achieved considering an inert gas model 

because of the energy term simplicity. A complete description of experimental and theoretical 

knowledge of contraction in inert gases has been made in review [1]. A big number of full-scale 

contraction models were developed in the last decades. However, all these models use 

traditional approach of effective lifetime by Holstein for the description of resonant atoms. This 

approximation corresponds to a local balance of resonant atoms and does not consider 

resonance radiation trapping. In this work a previously proposed method [2] of accurate 

description of the resonance radiation transport for solving self - consistent problems is applied 

to a model of contracted discharge in an inert gas and the main goal of the paper is to reveal the 

role of resonance radiation transport in formation of different plasma parameters. 

 

 

Semianalytical contraction model 

A simple qualitative three - level semianalytical model of discharge contraction, based 

on joint solution of Boltzmann kinetic equation for an electron energy distribution function 

(EEDF), differential balance equation of charged particles, integral balance equation of 

resonant atoms and an equation for a maintaining conditions of discharge current, may be 

considered. The main mechanism of contraction belongs to the ionization non-linearity as a 

function of the electron concentration, which is related to the competition of the electron-atom 

and the electron-electron collisions. Boltzmann kinetic equation, accounting elastic electron – 

atom, electron-electron collisions and inelastic electron – atom collisions, can be written as: 
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(1) 

where e - electron charge, E - electric intensity,  - electron velocity, m - electron mass, M - 

atomic mass, )( a - elastic electron – atom collisions frequency, )( e - elastic electron – 
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electron collisions frequency, )(0 f - isotropic component of EEDF, )( 0
* fS - operator of 

inelastic collision, ekT - electron temperature. 

Since the operator )( 0
* fS  contains a total excitation cross section, by multiplying both 

sides of (1) by 
 

ex

dm


 2/32/1)2(4  integrating it from excitation energy ex to infinity in 

energy scale  , one will obtain a frequency of total inelastic electron – atom collisions:  
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(2) 

Given that the excitation cross sections of lower metastable and resonant states make the major 

contribution to the total excitation cross section in inert gases, it can be supposed that equation 

(2) could be used to describe the process of population of these lower states. In case of low 

average electron energy in comparison with the excitation energy ex , an approximation of 

black wall, assuming a quick exponential decline of the EEDF near the ex , can be used to find 

a solution of the Boltzmann equation for the isotropic component of EEDF )(0 f . Using the 

solution for the isotropic component of EEDF in the area of elastic collisions, which dominate 

in the formation of EEDF in atomic gases, equation (2) will transform to a simple analytical 

expression and will be determined as a particles flux through the excitation threshold: 
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(3) 

where the frequency a  can be approximated as   2/3
~ exa   for a heavy Argon atom. 

A simple three – level energy model consisting of the ground state, a resonant state and 

an ionization state is considered. The resonant state is populated by an excitation from the 

ground state with frequency r  and by a recombination Г  from the ionization state and 

depopulated by a stepwise ionization with frequency siW  and by spontaneous decay with an 

output of resonance radiation with probability A . The ionization state is depopulated by an 

ambipolar diffusion of charged particles and the recombination to the resonance level. An 

integral balance equation for resonant atoms and a differential balance equation with boundary 

conditions for charged particles can be written in the form: 
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where en is an electron concentration, R - discharge tube radius, aD - ambipolar diffusion 

coefficient,  rNrG , - integral resonance radiation transport operator: 

  
V rrr rdrrKrANrANNrG '')'()(),( 3 , 

 

(6) 

and  'rrK   is a kernel of the integral operator ),( rNrG . 

 

Holstein approximation and precise description of resonance radiation transport 

Traditional approach in the description of resonance radiation transport is related to an 

assumption that the resonant atoms density )(rN r is close to a fundamental radiation mode and 

decreases much slower than the kernel  'rrK  of the integral operator (6). Such assumption 

makes possible to take )(rN r  as a constant in (6) within the fall of the kernel. It leads to an 

expression effr ArNrG )()(  , where effA is an inverse effective lifetime of the resonant state 

given by Holstein. In this case initial equations (4), (5) will be rewritten as an algebraic 

equation for resonant atoms and a differential equation for electrons:  
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(8) 

If the radial distribution of resonant atoms drastically differs from the fundamental radiation 

mode, Holstein effective lifetime approximation goes beyond its applicability. In this case 

resonant radiation transport should be taken into account precisely. In paper [2] a precise 

method of joint solution of integral equation (4) and differential equation (5) with an accurate 

consideration of resonance radiation transport is described. It is proposed to divide the whole 

plasma volume V into a large number of parts jV  which are small compared to V, and, within 

this volumes, the concentration of resonant atoms can be considered constant. Then, equations 

(4), (5) takes the form of a system of linear algebraic equations: 
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(10) 

where matrix with elements kjb  takes into account appearance or the resonance atoms outside 

the excitation zone due to radiation transport and the differential operator in (5) is replaced by a 

matrix with elements kja  using finite differences.  
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Results and conclusion 

Comparison of solutions, obtained using the traditional approximation of the effective 

lifetime (7), (8) and with the correct calculation of resonance radiation transfer (9), (10), will 

reveal the influence of resonance radiation transport on the formation of plasma parameters. 

Results are presented in figure 1 in case of 100PR Torr*cm, where P is pressure. 

 

Fig. 1. Dependence of the electron concentration and resonant atoms concentration (a) at the discharge axis, 

effective cross section of the current filament (b) and electric intensity with electron temperature (c) on current, 

calculated in two approximations: solid dots- exact solution, open dots- approximation of the effective lifetime. 

 

As can be seen in fig. 1 at low currents, when the radial distributions are close to the 

fundamental modes of diffusion and radiation problems, the solutions within the frameworks of 

effective lifetimes yield sufficiently accurate results. With a growth of current, when the radial 

distributions start to differ from the fundamental modes, shortcomings of the local solution 

become evident. This fact illustrates the effect of higher diffusion and radiation modes in 

formation of plasma parameters. Radiation transport leads to a broadening of an effective cross 

section of discharge current 
R

o eeeff RnrdrrnS ))0(())(( 2  (fig 1b) and reduces electron 

concentration at the axis (fig 1a) as well as resonant atoms concentration at the axis (fig 1a). As 

a result, a critical discharge current is shifted towards larger values. The influence of radiation 

transport on electric intensity and electron temperature is insignificant (fig. 1c). The discharge 

current equation can be written as effee SEnebRi  )0(2 2 , where eb - electron mobility. 

As a result a simple three - level semianalytical model shows a good applicability of 

Holstein approximation while the radial distributions of different plasma components are close 

to fundamental diffusion and radiation modes. In contracted discharge a notable difference 

between two approaches is demonstrated. These facts show the influence of higher diffusion 

and radiation modes. 
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