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Introduction Runaway electrons constitute a significant threat to tokamak experiments. To

minimize the risk of damage, it is crucial to understand the runaway-electron dynamics, which

during runaway mitigation can be strongly influenced by the interaction with partially ionized

atoms. It is therefore important for runaway mitigation to have accurate models of the inter-

action between fast electrons and partially screened nuclei of heavy ions. Fast electrons are

not simply deflected by the Coulomb interaction with the net charge of the ion, but also probe

its internal electron structure, so that the nuclear charge is not completely screened. They can

therefore be expected to experience higher collision rates against impurities, leading to a more

efficient damping.

To model the interaction between fast electrons and partially screened impurities, we have de-

rived a generalized collision operator from first principles, resulting in analytic expressions for

the collision frequencies [1]. We model elastic electron-ion collisions quantum-mechanically in

the Born approximation, using density functional theory (DFT) to obtain the electron-density

distribution of the impurity ions. To describe inelastic collisions with bound electrons, we em-

ploy Bethe’s theory for the collisional stopping power [2]. We find that the deflection and

slowing-down frequencies are increased significantly compared to standard collisional theory,

already at sub-relativistic electron energies [1]. Furthermore, we derive an analytical expres-

sion for the effective critical field for runaway generation and decay that takes into account the

presence of partially screened impurities. In this contribution, we detail the derivation of this

effective critical field, and present a formula that takes arbitrary ion species into account.

Generalized collision operator The Fokker-Planck collision operator between species a and

b can be simplified to Cab = νab
D L ( fa) +

1
p2

∂

∂ p

[
p3
(

νab
S fa +

1
2νab
‖ p∂ fa

∂ p

)]
, in the limit when

species b has a Maxwellian distribution. Here, fa is the distribution function of species a,

p= γv/c is the normalized momentum (with γ the Lorentz factor, L represents scattering at

constant energy, and νab
D , νab

S and νab
‖ are the deflection, slowing-down and parallel-diffusion

frequencies, which are well known in the limits of complete screening (i.e. the electron interacts

only with the net ion charge) and no screening (the electron experiences the full nuclear charge).

Accounting for partial screening, we obtain generalized expressions for νei
D and νee

S [1]. Focus-
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ing on the effective critical field Eeff
c , the following equations are specialized to the superthermal

momentum region, in which the critical momentum pc corresponding to Eeff
c is found. Thus all

of the following expressions are given for superthermal electrons.

In units of relativistic collision times τc =(4πnecr2
0 lnΛ0)

−1 (where r0 is the classical electron

radius), the generalized deflection frequency is given by

νD =

√
p2 +1

p3 lnΛ0

(
lnΛ

ee + lnΛ
eiZeff +∑

j

n j

ne

[
(Z2

j−Z2
0, j) ln

(
2a j p

α

)
− 2

3
(Z j−Z0, j)

2
])

, (1)

where Z0, j is the ionization state and Z j is the charge number of the nucleus for species j,

α ≈ 1/137 is the fine-structure constant, Zeff = ∑ j n jZ2
0, j/ne, where n j is the density of species

j and ne represents the density of free electrons. The parameter a j was determined from DFT

calculations, and is an effective ion size which depends on the ion species j. For example, we

obtain the following for the first ionization states of argon: aAr+=0.329, aAr2+=0.306, aAr3+=

0.283, aAr4+=0.260, and aAr5+=0.238. For the Coulomb logarithms, in the superthermal limit

we use lnΛee = lnΛ0 + ln[
√

2(γ−1)/pTe] and lnΛei = lnΛ0 + ln(2p/pTe), where pTe is the

thermal momentum and lnΛ0 = 14.9−0.5ln(ne/1020m−3)+ ln(Te/keV). For the superthermal
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Figure 1: (a) The deflection frequency and

(b) the slowing-down frequency as a function of

the incoming-electron momentum, normalized to

the completely screened collision frequencies. The

black lines denote our model, and the approximate

Rosenbluth-Putvinski (RP) model of νee
S is shown in

dashed green. Parameters: T = 10eV and Ar+, with

density nAr = 1020 m−3.

slowing-down frequency, we obtain

νS =
p2 +1

p3 lnΛ0

(
lnΛ

ee+∑
j

n j

ne
Ne, j

(
lnh j−β

2)).
(2)

Here h j = p
√

γ−1/I j and I j is the mean ex-

citation energy of the ion, normalized to the

electron rest energy.

Figure 1 shows the enhancement of the de-

flection and slowing down frequencies com-

pared to the completely screened limit (CS)

for singly ionized argon. Both are enhanced

significantly already at sub-relativistic ener-

gies. A widely used rule of thumb that is men-

tioned in passing by Rosenbluth and Putvin-

ski [3], suggests that inelastic collisions with

bound electrons can be taken into account by

adding half the number of bound electrons to

the number of free electrons. As shown in Fig. 1, this model (RP) overestimates the slowing-

down frequency at low energies and is a significant underestimation at high runaway energies.
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Effective critical electric field The critical electric field is a central parameter for both gener-

ation of a runaway current and for its decay rate in a highly inductive tokamak; in the latter case

it is predicted that the induced electric field will be close to the critical electric field so that the

current decays according to dI/dt=2πREeff
c /L [4], where L∼µ0R is the self-inductance and R

is the major radius. The drag due to synchrotron radiation reaction increases the critical field [5]

but the effect is small for high density and low temperature characteristic of disruptions. How-

ever, the minimum electric field required to accelerate a runaway beam is strongly increased by

collisions with partially stripped ions, due to both collisional friction and pitch-angle diffusion.

We calculate the effective electrical field due to collisions with partially screened ions by

considering the pitch-angle averaged force-balance equation 〈eEeff
c 〉= minp pνS, assuming fast

pitch-angle dynamics compared to the timescale in the momentum variable p [6, 7]. In the

Fokker–Planck equation, this amounts to requiring that the pitch-angle flux vanishes (here writ-

ten in the relativistic limit and neglecting synchrotron radiation reaction):

∂ f̄
∂ t

=
∂

∂ p

[
(pνS− eEξ ) f̄

]
+

∂

∂ξ

[
(1−ξ

2)

(
eE
pmc

f̄ +
1
2

νD
∂ f̄
∂ξ

)
︸ ︷︷ ︸

=0

]
, (3)

where f̄ = p2 f , and E is normalized to the critical field Ec=nee3 lnΛ0/4πε2
0 mec2. The slowing-

down frequency νs and the deflection frequency νD are enhanced compared to their classical

values due to the presence of partially ionized atoms as well as the energy-dependence of the

Coulomb logarithm lnΛ according to Eqs. (1) and (2).

The condition that the pitch-angle flux vanishes yields the following form for the angular

distribution: f̄ = G(t, p)Aexp(Aξ )/2sinhA, where A(p) = 2E/pνD. Then, Eq. (3) integrated

over pitch-angle yields

∂G
∂τ

+
∂

∂ p
[U(p)G] = 0, U(p) =

E
tanhA

− pνS−
E
A
. (4)

The effective critical field is now the minimum field for which force balance is possible:

Eeff
c = min

p

[
E
∣∣U(p,E) = 0

]
≈min

p

[
D+H ln p+

1
2p

(B+C ln p)
]
, (5)

where we took the limit tanhA→ 1 and assumed p� 1, which is consistent with the full so-

lution of Eq. (5). In this limit, νD ≈ p−2(B+C ln p), where B = (1+Zeff)
[
1+ 1

lnΛ0
ln
(

2
pT

)]
+

1
lnΛ0

∑ j
n j
ne

[
(Z2

j−Z2
0, j) ln

(
2a j
α

)
− 2

3(Z j−Z0, j)
2
]

and C = 1
lnΛ0

∑ j
n j
ne

Z2
j , if terms of order O(1/ lnΛ0)

are neglected. Similarly, νS≈ 1
p(D+H ln p) where D= 1+ 1

lnΛ0

[
ln(
√

2/pT )+∑ j
n j
ne

Ne, j ln(1/eI j)
]
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and H = 3
2

1
lnΛ0

∑ j
n j
ne

Ne, j. The effective critical field is then approximated by

Eeff
c = D+H

[
1+ ln

(
B+C ln(B/H)

2H

)]
(6)

≈1+
ln(
√

2/pT )

lnΛ0
+

Ne,Z

lnΛ0

nZ

ne

(
ln(1/I j)+

1
2
+

3
2

ln[X(Y + lnXY )]
)
, (7)

where X = Z2/3Ne and Y = ln
(
2a j/α

)
−2/3. The last approximation is valid if a few low ion-

ization states of a single element dominate. For example, for singly ionized argon we obtain

Eeff
c ≈ 1+ 1

lnΛ0

(
7− ln

√
TeV +240nAr

ne

)
. This formula can also be used for higher argon ioniza-

tion states Z0, j ≤ 3 with an error of less than 10%. By numerically solving Eq. (3) when syn-

chrotron radiation losses are included, we find that the formula for the effective critical field (6)

is accurate to within 10% for magnetic fields in the range B[T]2.nAr[1018 m−3].
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Figure 2: Effective critical field as func-

tion of nAr/nD, where nAr is the density of

Ar+, nD = 1020 m−3 and T = 10eV.

Figure 2 shows the effective critical electric field

normalized to Ec. The full model (solid black line for

the solution to Eq. (5) and dashed red for the approx-

imate analytical formula for Ar+) is compared to the

Rosenbluth-Putvinski model in dashed green. The RP

model can be seen to underestimate the effective crit-

ical field, which is a result of both neglecting the en-

hancement of elastic collisions and approximating the

inelastic collision rate.

Conclusion We have derived an expression for the

collision operator between fast electrons and partially ionized atoms. With kinetic simulations

using CODE [8] we have shown that the modifications to the deflection and slowing down

frequencies are of equal importance in describing the runaway current evolution [1]. Here we

apply the generalized formulas to calculate the effective critical electric field, which can be ex-

pressed with an analytical formula if we assume fast pitch-angle dynamics. The effective critical

field is significantly enhanced compared to previous models. This is relevant for the efficacy of

mitigation strategies for runaway electrons in tokamak devices.
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