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Introduction Runaway electrons constitute a significant threat to tokamak experiments. To
minimize the risk of damage, it is crucial to understand the runaway-electron dynamics, which
during runaway mitigation can be strongly influenced by the interaction with partially ionized
atoms. It is therefore important for runaway mitigation to have accurate models of the inter-
action between fast electrons and partially screened nuclei of heavy ions. Fast electrons are
not simply deflected by the Coulomb interaction with the net charge of the ion, but also probe
its internal electron structure, so that the nuclear charge is not completely screened. They can
therefore be expected to experience higher collision rates against impurities, leading to a more
efficient damping.

To model the interaction between fast electrons and partially screened impurities, we have de-
rived a generalized collision operator from first principles, resulting in analytic expressions for
the collision frequencies [1]. We model elastic electron-ion collisions quantum-mechanically in
the Born approximation, using density functional theory (DFT) to obtain the electron-density
distribution of the impurity ions. To describe inelastic collisions with bound electrons, we em-
ploy Bethe’s theory for the collisional stopping power [2]. We find that the deflection and
slowing-down frequencies are increased significantly compared to standard collisional theory,
already at sub-relativistic electron energies [1]. Furthermore, we derive an analytical expres-
sion for the effective critical field for runaway generation and decay that takes into account the
presence of partially screened impurities. In this contribution, we detail the derivation of this

effective critical field, and present a formula that takes arbitrary ion species into account.

Generalized collision operator The Fokker-Planck collision operator between species a and

b can be simplified to C* = gb.i” (fa) + I%f—p [p3 (vg’b fa+ %vﬁb p %{;‘ >] , in the limit when

species b has a Maxwellian distribution. Here, f, is the distribution function of species a,
p=7v/c is the normalized momentum (with y the Lorentz factor, £ represents scattering at
constant energy, and vgb , vgb and vﬁ’b are the deflection, slowing-down and parallel-diffusion
frequencies, which are well known in the limits of complete screening (i.e. the electron interacts
only with the net ion charge) and no screening (the electron experiences the full nuclear charge).

Accounting for partial screening, we obtain generalized expressions for vf)" and v¢° [1]. Focus-
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ing on the effective critical field Eﬁff, the following equations are specialized to the superthermal
momentum region, in which the critical momentum p,. corresponding to ES is found. Thus all
of the following expressions are given for superthermal electrons.

In units of relativistic collision times T, = (47rnecr(2) In AO)_1 (where rq is the classical electron
radius), the generalized deflection frequency is given by
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where Zj ; is the ionization state and Z; is the charge number of the nucleus for species j,
o ~ 1/137 is the fine-structure constant, Zeg = Y in jZ& j /ne, where n; is the density of species
J and n, represents the density of free electrons. The parameter a; was determined from DFT
calculations, and is an effective ion size which depends on the ion species j. For example, we
obtain the following for the first ionization states of argon: a, .+ =0.329, a, 2+ =0.306, a, 3+ =
0.283, a4+ =0.260, and a, s+ =0.238. For the Coulomb logarithms, in the superthermal limit
we use InA® = InAg + In[\/2(y—1)/p1e] and InA¥ = InAg +In(2p/pr,), where pr, is the
thermal momentum and In Ag = 14.9 —0.51In(n, /10*°*m~3) +In(T, /ke V). For the superthermal

slowing-down frequency, we obtain
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Figure 1: (a) The deflection frequency and

for singly ionized argon. Both are enhanced
gLy toniz & (b) the slowing-down frequency as a function of

ignificantly alr -relativistic ener- . . .
significantly already at sub-relativistic ene the incoming-electron momentum, normalized to

gies. A widely used rule of thumb that is men- the completely screened collision frequencies. The

tioned in passing by Rosenbluth and Putvin- ek fines denote our model, and the approximate

ski [3], suggests that inelastic collisions with Rosenbluth-Putvinski (RP) model of v¢¢ is shown in

bound electrons can be taken into account by dashed green. Parameters: 7 = 10eV and Ar™, with
adding half the number of bound electrons to density na, = 10°°m 2.
the number of free electrons. As shown in Fig. 1, this model (RP) overestimates the slowing-

down frequency at low energies and is a significant underestimation at high runaway energies.
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Effective critical electric field The critical electric field is a central parameter for both gener-
ation of a runaway current and for its decay rate in a highly inductive tokamak; in the latter case
it is predicted that the induced electric field will be close to the critical electric field so that the
current decays according to dI /dt =2nRESY /L [4], where L~ LR is the self-inductance and R
is the major radius. The drag due to synchrotron radiation reaction increases the critical field [5]
but the effect is small for high density and low temperature characteristic of disruptions. How-
ever, the minimum electric field required to accelerate a runaway beam is strongly increased by
collisions with partially stripped ions, due to both collisional friction and pitch-angle diffusion.

We calculate the effective electrical field due to collisions with partially screened ions by
considering the pitch-angle averaged force-balance equation (eEST) = min, pVs, assuming fast
pitch-angle dynamics compared to the timescale in the momentum variable p [6, 7]. In the
Fokker—Planck equation, this amounts to requiring that the pitch-angle flux vanishes (here writ-

ten in the relativistic limit and neglecting synchrotron radiation reaction):

%:;_p [(va—eEé)ﬂ+%[<1_52)\(1%f+%w§_g”’ o
-0

where f = p2 f,and E is normalized to the critical field E, =n.e3InAg / 47r8§mec2. The slowing-
down frequency V; and the deflection frequency vp are enhanced compared to their classical
values due to the presence of partially ionized atoms as well as the energy-dependence of the
Coulomb logarithm In A according to Egs. (1) and (2).

The condition that the pitch-angle flux vanishes yields the following form for the angular
distribution: f = G(t,p)Aexp(AE)/2sinhA, where A(p) = 2E/pvp. Then, Eq. (3) integrated

over pitch-angle yields
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The effective critical field is now the minimum field for which force balance is possible:

1
ES™ =min [E|U(p,E) = 0] ~ min [D-I-Hlnp—i— 2—(B+C1np)} , (5)
p p 14

where we took the limit tanhA — 1 and assumed p > 1, which is consistent with the full so-
lution of Eq. (5). In this limit, vp ~ p~2(B+Cln p), where B = (1 + Zes1) [1 + e In (p%)] n

) 2a; ; .
lni\o i Z—i [(ZJZ.—Z%J) ln(%) —%(Zj—Zo,j)z} andC = i\o Y Z—ZZJZ if terms of order &'(1/1nAy)

are neglected. Similarly, vg ~ %(D—I—Hlnp) where D=1+ ﬁ [In(v2/pr) +X; Z—iNeJ In(1/el;)]

In
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and H = %ﬁz j Z—iN& j- The effective critical field is then approximated by

eff _ B+CIn(B/H)

E"=D+H {1+ln(—2H )] 6)
1 In(v2/pr) | Nez nz N

~lL+ nAq +lnAOn—e(1n(1/1])+§+Eln[X(Y—HnXY)]), (7)

where X = Z? /3N, and Y = In(2a;/c) —2/3. The last approximation is valid if a few low ion-

ization states of a single element dominate. For example, for singly ionized argon we obtain

Eé’ff ~ 1+ 1n]A0 (7 —In/Tev + 240”n—‘:f). This formula can also be used for higher argon ioniza-
tion states Zy ; < 3 with an error of less than 10%. By numerically solving Eq. (3) when syn-
chrotron radiation losses are included, we find that the formula for the effective critical field (6)

is accurate to within 10% for magnetic fields in the range B[T]?> <na,[10¥m~3].

Figure 2 shows the effective critical electric field 35
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the solution to Eq. (5) and dashed red for the approx-
imate analytical formula for Ar") is compared to the

Rosenbluth-Putvinski model in dashed green. The RP

model can be seen to underestimate the effective crit-
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ical field, which is a result of both neglecting the en- nac/nD
hancement of elastic collisions and approximating the Figure 2: Effective critical field as func-
inelastic collision rate. tion of na,/np, where na; is the density of
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Conclusion We have derived an expression for the Ar’,np =107m™ and T = 10eV.

collision operator between fast electrons and partially ionized atoms. With kinetic simulations
using CODE [8] we have shown that the modifications to the deflection and slowing down
frequencies are of equal importance in describing the runaway current evolution [1]. Here we
apply the generalized formulas to calculate the effective critical electric field, which can be ex-
pressed with an analytical formula if we assume fast pitch-angle dynamics. The effective critical
field is significantly enhanced compared to previous models. This is relevant for the efficacy of
mitigation strategies for runaway electrons in tokamak devices.
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