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Abstract
In the framework of the study of parametric instabilities involving lower hybrid wave
propagation in a magnetized plasma, this work presents a new nonlinear parametric dispersion
equation, based on a kinetic model, taking into account the collisional effects, useful to
analyze the instabilities emerging in the outer layers of a tokamak plasma. For typical
parameters of present day LHCD experiments, we compare the numerical solutions of the full
parametric dispersion equation in collisionless plasma with the numerical solutions obtained
in both collisional and collisionless case, considering only the particle dynamics parallel to
the equilibrium magnetic field. The role of the electron temperature and the ion composition
are also investigated in order to find outer plasma conditions useful to suppress the parametric
instabilities in future fusion reactor scenarios.
Introduction
Microwave power coupled to tokamak plasmas produces high frequency (HF) density
perturbations which may nonlinearly couple with low frequency (LF) plasma density
fluctuations, driving them unstable [1,2]. These instabilities may grow in space and in time,
broadening the incident pump wave spectrum versus the parallel wavenumber and causing the
lower hybrid (LH) absorption near the surface of the plasma column, preventing its
penetration to the interior [3,4]. Thus it is of great importance to know for present day LHCD
experiments under which circumstances parametric instabilities occur.
In this paper we improve our previous modeling of parametric instabilities [5,6] deriving a
full kinetic description of the LH wave propagation, taking into account the collisional
effects, along with a more accurate modeling of the nonlinear mode coupling of the pump
wave with ion-sound modes. This was achieved performing a more accurate perturbative
analysis of the kinetic equations retaining terms up to the third order and taking into account
the self-consistent electric field with the charge density perturbation. As in previous works
[5,6,7], in order to describe the nonlinearity in the outer layers of a tokamak plasma, we
consider dominant the particle dynamics parallel to the equilibrium magnetic field. Then, we
evaluate the growth rates of the parametric instabilities in different edge plasma conditions

concerning the electron temperature and the ion composition.
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Collisional parametric dispersion equation

In order to obtain a full kinetic description of the nonlinear mode coupling of the HF lower
hybrid waves with the LF plasma fluctuations, in the presence of collisional effects, the
general Maxwell-Boltzmann system of equations is solved by means of a perturbative
method. The Boltzmann equation is reduced to a 1D kinetic equation in velocity space to take
into account only the particle dynamics parallel to the confinement magnetic field. We use a
particle conserving BGK collision operator [8] and assume that the velocity distribution
function for both ion and electron populations is isotropic in the perpendicular direction. The
analysis is limited to fluctuations at frequencies much smaller than the ion cyclotron
frequency (w,r < w.;) and characteristic lengths in directions perpendicular to the static
magnetic field much larger than the ion Larmor radius (k,p; < 1). We use a slab geometry
with the static magnetic field B, = B,Z and with the inward radial direction oriented as X. We
consider steady-state solutions for homogenous plasma. These assumptions allow us to solve
the Maxwell-Boltzmann system of equations by means of a spectral method. Following a
perturbative analysis up to the third order, we obtain the following hierarchy of kinetic

equations. At the first order we have the HF linear electron response:
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The ion species, due to their large inertial mass, cannot follow the high frequency oscillations.
At the second order, we have the LF nonlinear electron response and the LF ion linear

response:
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At the third order, we have the HF nonlinear electron response:
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where in the equation above C[.] denotes the convolution operator in the spectral domain
{w,ky, ky, k), ﬁ((l ) = = [dv, ~(m), ggo) is the local equilibrium distribution function that here
we assume Maxwellian, i.e. g = nPe~2/%ha) [\ T Vena» 1 is the unperturbed density for

the a species (with mass m, and charge q,), vinq = /2 To/m, is the thermal velocity, the
temperatures T, are measured in energy units and v, is the collisional relaxation which can be
approximated by v, = 2.9107%A:n (O)T 32y, = 48108A:n (O)Tl 3/2/11._ /2 with ; is the ion

mass in units of the proton mass and A, is the Coulomb logarithm.
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From Maxwell equations, taking the electrostatic limit, we obtain the following collisional
nonlinear dispersion relation:
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We considered a four wave interaction between a pump wave ¢ge/(@ot=ko'™) 3 lower
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sideband ¢,e~/(@1t=k1°7) an upper sideband ¢,e~/(@2t=*2°7) and a low frequency quasi-mode
¢ e~/ @tk 1) with selection rules w = w5 + wq, k, = k1 + kyo. Here ¢ is the low frequency
dielectric function, &, , are the high frequency dielectric functions, S is the plasma dispersion
function, y; is the ion susceptibility, and the limit of dominant particle dynamics parallel to

the equilibrium magnetic field is considered. We also have:
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where Ug = vz/vth,aa Ug = (w +j Va)/kzvth,aa Ya = Va/kzvth,aa Uen = (wh +j Ve)/kzhvth,ea
Yen = Ve/kznvene (h = 0,1,2) and F,(u,, ue) 1s the coupling function:
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Figure 1 — Contour plot of Log;o(1/]x|) where x is the lhs of Eq. (5). It is assumed a collisionless Deuterium
plasma with n, = 2 10*2cm™3,T, = T; = 10 eV, P,y = 3.57 kW /cm?, N,y = 2.0, fo =8 GHz , AN, = 10. In
(left) we show the effect of the increment of the electron temperature AT, = 10 eV; in (right) we consider a
plasma of 50% Deuterium and 50% Lithium (’Li). The vertical line separates stable (y < 0) from unstable
(y > 0) region. The arrow highlights the shift of the unstable zeros toward the stable region.

Numerical results and conclusions
We first solved Eq. (5) for the RF plasma parameters typical for LH experiments on the FTU

tokamak [9] for a collisionless plasma. In Fig. 1 we show the contour plot of Log;o(1/[x|)
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where x is the lhs of Eq. (5) for two electron temperature (left) and two plasma compositions
(right). Larger electron temperature and heavier ion species reduce the parametric instabilities,
in agreement with previous findings [10]. In Fig. 2 (left) we compare the numerical solutions
of Eq. (5) with an approximate analytical solution [7] in the limit of parallel dynamics as well
as with the numerical solutions of the full parametric dispersion relation [3]. Our preliminary
results seem to overestimate growth rates though the order of magnitude is in agreement with
previous results. This problem is still under investigation, mainly concerning numerical
issues. In Fig. 2 (right) we show the effect of collisions. The growth rate of the instability is
slightly reduced by collisions, as suggested by previous analysis [6,11].
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Figure 2 — Left: growth rates of the low frequency modes normalized to the angular frequency w, as a function
of AN, = k,c/w, for a collisionless plasma with parameters as in Fig. 1. Numerical solutions of Eq. (5),
continuos line, are compared with analytical solutions from [7], dashed line, and with numerical solutions of the
full kinetic dispersion equation from [3], dotted line. Right: Contour plot of Log;o(1/|x|) where x is the lhs of Eq.
(5). We compare a collisionless and collisional Deuterium plasma with parameters as in Fig. 1 with AN, = 1.
The vertical line separates stable (y < 0) from unstable (y > 0) region. The arrow highlights the shift of the
unstable zero toward the stable region.
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