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Introduction - The superconducting tokamak JT-60SA, under construction in Naka (Japan), 

is a device which will study advanced plasma conditions, such as Steady State scenarios and 

break-even equivalent plasmas [1,2,3]. The additional heating system relies on a flexible 

combination of Electron Cyclotron and Neutral Beams (NBs). The beam injection system is 

composed of 12 neutral beam units with positive ion sources (P-NB) and two beams with 

negative ion sources (N-NB) for a total power of 34 MW. P-NBs have a wide variety of 

injection geometries (perpendicular, tangential co- and counter-current) and, due to their 

energy (85 keV), these beams deposit most of the 

power on ions. The N-NBs are both tangential 

and co-current: this helps to control the current 

profiles since at the energy of 500 keV, particles 

couple mostly with electrons. In Figure 1 the 

poloidal projection of beam trajectories is shown.  

Modelling tools - NBI simulations are carried out 

using BBNBI (Beamlet-Based NBI-model) [4] 

and ASCOT (Accelerated Simulation of Charged 

Particle Orbits in a Tokamak) [5]. BBNBI is a 

Monte Carlo code to simulate the ionisation of 

fast particles injected through NBs. It uses the full description of the beamlet geometries and, 

given the NB output power and energy, it generates a set of markers representing a constant 

particle flux which get ionised. For the present work, 10
5
 markers have been used. The fast 

ion birth profile and the shine-through (un-ionised fraction of injected particles) can be 

calculated using BBNBI. ADAS cross-sections are used for ionisation collision [6]. ASCOT 

is a hybrid solver of the Fokker-Plank equation which combines guiding centre and full 

particle gyro-motion. Given the ionised particles’ initial position and velocity, the code 

Figure 1 Beam trajectories on poloidal 
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follows charge particle orbits in toroidal geometry considering interaction with background 

plasma via Monte Carlo collision operators. The simulation assumes a steady-state 

background and the particles are followed up to a thermalisation/loss condition is reached. For 

the present simulations, the thermalisation condition is Epart=2Te and the loss condition is 

ρpart=ρwall. For all the figures in this paper, ρ is the poloidal normalised flux. An additional 

condition when particles are no more considered energetic is used, i.e. when Epart<10 keV.  

Plasma scenario - An inductive H-mode scenario at low Greenwald fraction (fGr=0.5) (also 

called Scenario 2 [3, 7]) has been chosen to study the fast-ions behaviour on JT-60SA. The 

ion species in the plasma and the injected neutrals are deuterium. The kinetic profiles of the 

simulations are shown in Figure 2.  

Beam ion birth profile -At first, it is needed to compute the fast ion generation profiles. In 

Figure 3 the fast ions birth profile can be seen, subdivided in the main beam categories: the 

negative neutral beam, the positive perpendicular and the positive tangential beams. The 

positive beams energy is such that most of the particles are ionised in the outer half of the 

plasma. For the perpendicular beams, an increase near the core is visible due to their 

trajectory (closer to the core). For the negative beams, the majority of the particles is 

generated at ρ~0.25 and ρ~0.6 due to the off-axis injection geometry. The shine-through is 

small in the case of study (less than 0.05%) and, for the positive tangential beams, it goes to 

zero. 

Slowing-down profiles - Given the NB ionisation profiles, the power deposition to the 

background plasma, current drive and deposition of toroidal angular momentum are 

investigated. The critical energy (where stopping by ions and electrons are equal) in this 

plasma is around 100 keV. This implies that P-NBs (85 keV energy) deposit around 85% of 

their energy to ions, while N-NBs (500 keV energy) deposit around 65 % of their energy to 

Figure 2 Plasma profiles for the simulation.  

Figure 3 Fast ion birth profile. P-P labels the 

perpendicular PNBs, and P-T the tangential PNBs. 

NNB labels the negative beams. TOT is their sum. 
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electrons. In Figure 4 the power deposition profiles confirm the theoretical estimate: N-NBs 

have the same order of magnitude for the two species, whereas P-NBs heat mainly ions. The 

total power deposited after the slowing-down is around 29 MW: 85% of the injected power. 

Figure 5(a) shows the contribution to the current given by the tangential P-NBs: it sums to 

zero except at the edge. The net zero contribution is due to the symmetry in their injection 

geometries: two are co-current while two are counter-current. The edge increase is given by 

the trapped-passing orbits boundary for beam particles and it can be seen also in the total 

current density, shown in Figure 5(b). Most of the current is given by the N-NBs, as expected 

given the beam energies. Considering the torque from the tangential P-NBs (Figure 5(c)), 

their contribution sums to zero but at the edge the counter-injected particles cause the high 

Figure 4 Power deposition profiles for ions (left) and electrons (right) 

Figure 5 (a) current density from tangential P-NBs (b) total induced current density (c) 

torque density from tangential P-NBs (d) total torque density 

(a) (b) 

(c) (d) 
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increase in the torque contribution. This edge effect is non-negligible neither in the total 

torque density, as Figure 5(d) shows. The final status of the particles is shown in Figure 6: 

most of wall losses are generated from beams #7 and #8, the counter-current tangential 

beams, as expected. The overall losses to the wall reach 3% of the injected particles.  

Conclusions and outlook - In this work, axisymmetric NBI simulations have been carried out 

for JT-60 SA inductive H-mode scenario at low Greenwald density fraction. The fast ions 

birth profile has shown to be peaked to the edge for P-NBs and peaked around ρ~0.25 and 

ρ~0.6 for N-NBs. The shine-through has resulted negligible. For slowing-down simulations, 

the ions heating is given mostly from P-NBs while for electrons the N-NBs contribute the 

most. The energies used are such that the N-NBs induce the majority of the current in the 

plasma. The P-NBs contribution both to current and to torque is compensated because of the 

injection geometry. Trapped-passing orbits boundary effects and particle losses are mostly 

given from counter-injected P-NBs (as expected) and the overall losses are around 3%. The 

foreseen work includes analysing the fast ion distribution function to study the stability of 

MHD modes in presence of fast particles. In addition, cases with carbon impurities and beam 

energy modulation will be carried out. 
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Figure 6 Histogram of particles ending status for each beam. Th. Labels the thermalized particles, Wall the 

particles lost to the wall, Emin the particles no more considered fast but neither thermalised 
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