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Introduction

Blobs or filaments are magnetic field aligned structures appearing in the scrape-off layers of

magnetically confined plasmas. There they are responsible for a significant amount of radial

particle and heat transport. Depletions on the other hand can be thought of as blobs with neg-

ative relative amplitude 4n/n0 < 0, where n0 is the density of the background plasma. Both

blobs and depletions are generated near or close to the last closed flux surface. However, blobs

and depletions propagate in opposite direction. On the other side in the night-side F-layer iono-

sphere plasma depletions appear as a result of the vanishing ionisation by solar radiation. These

"bubbles" rise in the ambient plasma and can trigger turbulence in otherwise stable regions. This

leads to the so-called equatorial spread-F phenomenon. In this contribution we present a unified

model for the essential dynamics of both blobs and depletions. It is based on the combination

of various scaling laws, analytical results and results from simulations.

Phenomenological 1d model "bubbles/stones"

The basic idea is to reduce the essential centre of mass dynamics to a one-dimensional

model. The blobs and depletions are modeled as infinitely long cylinders with density n0 +

4n and radius ` immersed in an ambient plasma with density n0. This is shown in Fig. 1.

n0+Δ n 

n0

2l
g

Figure 1: “Top hat” density structure

The coordinate system is aligned to the (effec-

tive) gravity g. This can either be the real grav-

ity in the ionosphere or the effective gravity g =

C2
s /R0 = te0/miR0 in magnetically confined plas-

mas. We propose the following one-dimensional

dynamical equation for the centre of mass velocity

V

Mi
dV
dt

= Fg−Fb− c1V − sgn(V )c2V 2 (1)

Here, the inertial mass appears as Mi = (2/Q)π`2(n0 +24n/9). The first term on the right

hand side is the gravitational force Fg = π`2(n0 +4n)g, which is just the mass of the filament
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times the gravity. The second term is the buoyancy Fb = π`2n0g, which includes the mass of the

displaced ambient plasma. We introduce a linear friction term with c1V = (2/Q)π`2n0gV/Cs.

This term was derived recently in References [1, 2] from energetic arguments in seeded blob

simulations. The last term is the nonlinear friction c2V 2 = (1/R2)π`n0V 2. In the model two fit

parameters appear, which we determined to Q = 0.34 and R = 0.85.

Maximum Velocity

From Eq. (1) the maximum velocity of blobs and depletions is retrieved by setting dV/dt = 0.

We get

max |V |
Cs

=

(
R2

Q

)
`

R0

(1+
(

Q

R

)2 |4n|/n0

`/R0

)1/2

−1
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which for (
4n/n0

`/R0

)
c
�
(

2R

Q

)2

(3)

reduces to

max |V |linear

Cs
=

Q

2
|4n|

n0
linear scaling (4)

In the opposite limit we have

max |V |sqrt

Cs
= R

(
`

R0

|4n|
n0

)1/2

square root scaling (5)

This limit can also be understood as incompressible limit since it is obtained from Eq (1) for

Cs→ ∞. In fluid models this scaling appears neglecting the compression of the EEE×BBBvelocity.

Equation (2) and (5) fit very well to numerical simulations as we show in Fig. 2.

Initial acceleration and Boussinesq approximation

If in Eq. (1) we set V = 0 we are left with the initial acceleration of a seeded blob/depletion

A0

g
= Q

2S(0)
M
≈ Q

2
4n

n0 +24n/9
→

Boussinesq

Q

2
4n
n0

. (6)

Equation (6) fits very well to numerical simulations as we show in Fig. 3 Interestingly, the

Boussinesq approximation appears in the acceleration as a neglect of the changed inertial mass

in Eq. (1) replacing it with the mass of the ambient plasma.

Current efforts and open issues

We are currently trying to include the recent results on temperature dynamics [3] in our mod-

els. To this end the temperature appearing in the sound speed Cs has to be modified. We assume
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Figure 2: The maximum radial COM velocities of depletions(a) and blobs(b) for compressible and

incompressible flows are shown. The continuous lines show Eq. (2) while the dashed line shows the

square root scaling Eq. (5) with Q = 0.32 and R = 0.85. Note that small amplitudes are on the right

and amplitudes close to unity are on the left side in plot (a)
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Figure 3: Average acceleration of depletions(a) and blobs(b) for compressible and incompressible flows

are shown. The continuous line shows the acceleration in Eq. (6) with Q = 0.32 while the dashed line is

a linear reference line, which corresponds to the Boussinesq approximation.
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C2
s = (te0 + ti0 +4te +4ti)/mi in the gravitational force Fg. Here, we take the temperature in-

side the blob/depletion. For the buoyancy and linear friction forces we take C2
s0 = (te0+ ti0)/mi,

which corresponds to the temperature of the ambient plasma. Inserted into Eq. (1) this leads to

changed formulas for acceleration and the centre of mass velocities.

A0 =
Q

2
4pe +4pi

miR0(n0 +24n/9)
(7)

max |V |sqrt = R

(
`|4pe +4pi|

n0miR0

)1/2

(8)

max |V |linear
Cs0

=
Q

2
|4pe +4pi|

pe0 + pi0
(9)

where pe,i =(n0+4n)(te,i+4te,i), pe,i0 = n0te,i and4pe,i = pe,i− pe,i0. The square root regime

and the acceleration reproduce the results in Reference [3]. It remains to be seen if the linear

regime can also be found in models with temperature dynamics but initial results look promis-

ing.

A remaining issue is of course how and if the parallel dynamics or sheath connected blobs

can be included in such a simplified model.
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