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Introduction

Recently analytical theory of neoclassical toroidal viscous torque (NTV) has been extended to
take finite orbit width into account [1]. Such effects can be important for tokamaks with reso-
nant magnetic perturbations (RMPs) such as e.g. in Ref. [2]. Within the Hamiltonian approach
for resonant transport regimes [3] this case is naturally included if quantities are evaluated for
full orbits. Firstly this concerns computation of canonical actions, angles and frequencies, sec-
ondly canonical (bounce) averages of the magnetic perturbation, and thirdly conservation laws
involving integration over canonical angles used to compute particle transport and torque. For
equilibrium fields of characteristic length larger than the orbit width the first modification should
lead only to small changes while increasing complexity in pre-computation and interpolation
of frequencies. The latter two modifications can however be done without substantial modifi-
cations of the original methods and should lead to more accurate results for perturbations with
radial variations on the scale of the orbit width. Here quasilinear results for NTV torque are
computed within this approximation for a typical case of a medium-sized tokamak with RMPs.

Integral torque and orbit averages

To take the full orbit into account, flux surface averaged conservation laws should be replaced by
volumetric conservation laws where we perform integrals along the full orbit including radial
drift away from the flux surface of r = ry, where ry is given by an implicit relation to the
canonical toroidal momentum py = —““y,01(r) including species charge eq, speed of light c,
and Y, the poloidal flux function. It should be emphasized that while r is a radial coordinate,
the quantity r, measures the toroidal momentum of orbits and coincides with the radius of the
banana tip for trapped orbits, where their parallel velocity vanishes. Fixing r = r¢ as in the small
orbit width approximation would result in the torque generated by orbits of toroidal momentum
Do to be localized at ry. In contrast to that a full orbit contributes to sources on all flux surfaces

that it passes, the integral quasilinear toroidal torque evaluated over the full plasma volume is
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where integration over the toroidal torque density Ty defined in Eq. (18) of Ref. [3] is performed
over phase-space spanned by actions J = (/| ,Jy,pe) and canonical angles 6 with harmonics
of a Hamiltonian perturbation Hy, in canonical angles and using the resonance condition Q =
m ;jQ/ = 0 for canonical frequencies Q/ = Q/(J) and harmonic indices m; (see [3]). Here and in
Eq. (1) summation is performed over repeated indexes and n = m3 is the toroidal mode number.
By the definition of the partial integral torque Tqi,m(ra, rp) over the volume between two flux
surfaces of radius r, and r;, Eq. (1) can be written as a sum over contributions in finite radial
regions, Tlrlt Yy ATim(rk_l ,7%), with rog = 0 and ry at the separatrix, where

easgn l//pol m res Mres

Here the integral over 0 has been evaluated, variables J | ,Jy, po changed to u,n,re (see [3])

with 1) = Ny fixed at the resonance, ny, is the particle number density, vr ¢, the thermal velocity,
u = v/vrq the normalized velocity, and AT, the time that the orbit spends inside the radial

interval (r,,rp). We define thermodynamic forces via the unperturbed distribution function fp,
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with temperature Ty, = mavTa /2, species mass mg and potential ®, and are evaluated at ro.

3)

Despite the fact that all mentioned formulas are valid for all orbit sizes, in Ref. [3] an approx-
imation of small orbit width has been used. Here, using a full orbit average to compute Hp,
can change Tqi,nt in comparison to the small orbit width approximation. We write the Hamil-
tonian perturbation A (r, %, ) = ¥, H,(r,)e"? by a Fourier series in the toroidal angle ¢ of
straight field line flux coordinates x = (r, ¢, @) defined for the unperturbed axisymmetric equi-
librium. Velocity space dependencies of A via constants of motion are omitted in the notation.
For sufficiently small radial gradients of unperturbed quantities and toroidal harmonic number

n, harmonics Hy, in canonical angles are formally similar to the case of small orbit width,

Hpy = <Hn(r(19), 19)einqw(f)*ﬁo)*i(m2+nf15tp)wh7>b , 4)

where my is the canonical poloidal (bounce) harmonic, 7 is the time in the orbit, 0 < 7 < 7, W), =
27/ 1, is the bounce frequency, ¢ the safety factor, and the poloidal angle ¥ is evaluated along
the orbit starting from 9. In contrast to the case of small orbit width, changes of the quantity
H, on the radial scale similar to the orbit width are taken into account here by evaluation of the
radial position (%) during integration along the orbit.

Results for RMPs in a medium-sized tokamak

Computations for finite deuterium ion orbit width have been performed in an extended version

of the code NEO-RT for a non-axisymmetrically perturbed plasma in a medium-sized tokamak
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Figure 1: Left: Examples of different ion orbits of at thermal velocity. Wide orbits at small
Ppol becoming eventually potato orbits limit the range of applicability near p,, = 0. Near the
separatrix pPpol = 1 orbits are narrow, but also the radial scale of the fields becomes smaller.
Right: Comparison of the scale of orbits (solid) to the maximum perturbation amplitude (dashed
line). Averaging over orbits can introduce a significant modification of the perturbation strength.

with RMPs. For this purpose a first order correction in Larmor radius is used to approximate full
orbits. The radially local toroidal torque density is given by the derivative of Eq. (2) with respect
to r;, weighted by the derivative of r with respect to the volume, dr/dV. The normalized radial
variable Ppol = 1 /Wpol/Wpoy € (0,1) is used in figures, where y | is the value of the poloidal
flux function at the separatrix. Figure 1 shows examples of full trapped orbits of different pg
and their relative size with respect to the perturbation amplitude. The range of validity in this
particular computation is limited by the first-order radial width reaching unphysical values of
r < 0 or beyond the separatrix. For ions at thermal velocity v a lower radial limit is reached
for strongly counter-passing orbits with negative parallel velocity v| &~ —vrq. The upper limit
is realized for orbits with v| > 0 reaching beyond the separatrix. Toroidal torque density 7, and
partial integral torque AT(;,nt (0, r) evaluated up to a certain radius are shown in Figure 2 for both,
small orbit width approximation and finite orbits. Finite orbit width leads to radial shifts and
smoothing of Ty,. The overall result for the integral torque Tqi,nt is lower by a factor of two for
the computation with finite orbit width. In particular resonances of counter-passing orbits which
are shifted radially inwards from r¢ lead to a reduction of toroidal torque, since the perturbation

amplitude is strongly reduced at smaller radii.
Conclusion

The possibility of taking finite orbit width into account for the computation of neoclassical
toroidal viscous torque in resonant transport regimes within the Hamiltonian approach has

been demonstrated. The procedure has been applied to a representative medium-sized tokamak
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Figure 2: Radial dependency of torque density (left) and integral torque evaluated up to the ra-
dial position on the x-axis (right) for small (dashed) and finite orbit width (solid). Contributions
from a resonance of counter-passing orbits at ppo ~ 0.4 vanish for finite orbit width due to a
smaller pertubation amplitude at the actual orbit radius closer to the magnetic axis. Finite orbit
width has a strong influence on results for both, torque density and integral torque.

plasma with resonant magnetic perturbation and compared to computations in the small orbit
width approximation. In this case a strongly modified torque density profile is observed together
with a reduction of the integral toroidal torque by a factor of two. The former can be explained
by a radial redistribution of toroidal torque that does not influence global integral torque, while
the latter is likely caused by a different effective perturbation strength experienced by radially
displaced resonant orbits. The magnitude of the observed effect leads to the conclusion that
finite orbit width effects could considerably influence ion NTV torque in cases similar to the
one discussed here. Note that in case the effect of finite orbit width on NTV is significant, this

width should also be taken into account in computations of the perturbation field.
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