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Introduction

Recently analytical theory of neoclassical toroidal viscous torque (NTV) has been extended to

take finite orbit width into account [1]. Such effects can be important for tokamaks with reso-

nant magnetic perturbations (RMPs) such as e.g. in Ref. [2]. Within the Hamiltonian approach

for resonant transport regimes [3] this case is naturally included if quantities are evaluated for

full orbits. Firstly this concerns computation of canonical actions, angles and frequencies, sec-

ondly canonical (bounce) averages of the magnetic perturbation, and thirdly conservation laws

involving integration over canonical angles used to compute particle transport and torque. For

equilibrium fields of characteristic length larger than the orbit width the first modification should

lead only to small changes while increasing complexity in pre-computation and interpolation

of frequencies. The latter two modifications can however be done without substantial modifi-

cations of the original methods and should lead to more accurate results for perturbations with

radial variations on the scale of the orbit width. Here quasilinear results for NTV torque are

computed within this approximation for a typical case of a medium-sized tokamak with RMPs.

Integral torque and orbit averages

To take the full orbit into account, flux surface averaged conservation laws should be replaced by

volumetric conservation laws where we perform integrals along the full orbit including radial

drift away from the flux surface of r = rϕ , where rϕ is given by an implicit relation to the

canonical toroidal momentum pϕ =−eα

c ψpol(rϕ) including species charge eα , speed of light c,

and ψpol the poloidal flux function. It should be emphasized that while r is a radial coordinate,

the quantity rϕ measures the toroidal momentum of orbits and coincides with the radius of the

banana tip for trapped orbits, where their parallel velocity vanishes. Fixing r = rϕ as in the small

orbit width approximation would result in the torque generated by orbits of toroidal momentum

pϕ to be localized at rϕ . In contrast to that a full orbit contributes to sources on all flux surfaces

that it passes, the integral quasilinear toroidal torque evaluated over the full plasma volume is

T int
ϕ =

∫
d3r Tϕ =−∑

m
n
∫

d3
θ

∫
d3J

π

2
|Hm|2 δ (Ω)mk

∂ f0

∂Jk
, (1)
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where integration over the toroidal torque density Tϕ defined in Eq. (18) of Ref. [3] is performed

over phase-space spanned by actions J = (J⊥,Jϑ , pϕ) and canonical angles θ with harmonics

of a Hamiltonian perturbation Hm in canonical angles and using the resonance condition Ω =

m jΩ
j = 0 for canonical frequencies Ω j = Ω j(J) and harmonic indices m j (see [3]). Here and in

Eq. (1) summation is performed over repeated indexes and n = m3 is the toroidal mode number.

By the definition of the partial integral torque T int
ϕ (ra,rb) over the volume between two flux

surfaces of radius ra and rb, Eq. (1) can be written as a sum over contributions in finite radial

regions, T int
ϕ = ∑

N
k=1 ∆T int

ϕ (rk−1,rk), with r0 = 0 and rN at the separatrix, where

∆T int
ϕ (ra,rb)≡

π3/2nαcvT α

eαsgn(ψ ′pol)

∫
drϕ ∑

m
∑
res

n
∫

∞

0
duu3e−u2

∆τab|Hm|2
∣∣∣∣∂Ω

∂η

∣∣∣∣−1

ηres

(A1 +A2u2). (2)

Here the integral over θ has been evaluated, variables J⊥,Jϑ , pϕ changed to u,η ,rϕ (see [3])

with η = ηres fixed at the resonance, nα is the particle number density, vT α the thermal velocity,

u = v/vT α the normalized velocity, and ∆τab the time that the orbit spends inside the radial

interval (ra,rb). We define thermodynamic forces via the unperturbed distribution function f0,

A1 =
1

nα

∂nα

∂ r
+

eα

Tα

∂Φ

∂ r
− 3

2Tα

∂Tα

∂ r
, A2 =

1
Tα

∂Tα

∂ r
, (3)

with temperature Tα = mαv2
T α

/2, species mass mα and potential Φ, and are evaluated at rϕ .

Despite the fact that all mentioned formulas are valid for all orbit sizes, in Ref. [3] an approx-

imation of small orbit width has been used. Here, using a full orbit average to compute Hm

can change T int
ϕ in comparison to the small orbit width approximation. We write the Hamil-

tonian perturbation H̃(r,ϑ ,ϕ) = ∑n Hn(r,ϑ)einϕ by a Fourier series in the toroidal angle ϕ of

straight field line flux coordinates x = (r,ϑ ,ϕ) defined for the unperturbed axisymmetric equi-

librium. Velocity space dependencies of H̃ via constants of motion are omitted in the notation.

For sufficiently small radial gradients of unperturbed quantities and toroidal harmonic number

n, harmonics Hm in canonical angles are formally similar to the case of small orbit width,

Hm =
〈

Hn(r(ϑ),ϑ)einq(ϑ(τ)−ϑ0)−i(m2+nqδtp)ωbτ

〉
b
, (4)

where m2 is the canonical poloidal (bounce) harmonic, τ is the time in the orbit, 0< τ < τb, ωb =

2π/τb is the bounce frequency, q the safety factor, and the poloidal angle ϑ is evaluated along

the orbit starting from ϑ0. In contrast to the case of small orbit width, changes of the quantity

Hn on the radial scale similar to the orbit width are taken into account here by evaluation of the

radial position r(ϑ) during integration along the orbit.

Results for RMPs in a medium-sized tokamak

Computations for finite deuterium ion orbit width have been performed in an extended version

of the code NEO-RT for a non-axisymmetrically perturbed plasma in a medium-sized tokamak
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Figure 1: Left: Examples of different ion orbits of at thermal velocity. Wide orbits at small
ρpol becoming eventually potato orbits limit the range of applicability near ρpol = 0. Near the
separatrix ρpol = 1 orbits are narrow, but also the radial scale of the fields becomes smaller.
Right: Comparison of the scale of orbits (solid) to the maximum perturbation amplitude (dashed
line). Averaging over orbits can introduce a significant modification of the perturbation strength.

with RMPs. For this purpose a first order correction in Larmor radius is used to approximate full

orbits. The radially local toroidal torque density is given by the derivative of Eq. (2) with respect

to rb weighted by the derivative of r with respect to the volume, dr/dV . The normalized radial

variable ρpol =
√

ψpol/ψa
pol ∈ (0,1) is used in figures, where ψa

pol is the value of the poloidal

flux function at the separatrix. Figure 1 shows examples of full trapped orbits of different pϕ

and their relative size with respect to the perturbation amplitude. The range of validity in this

particular computation is limited by the first-order radial width reaching unphysical values of

r < 0 or beyond the separatrix. For ions at thermal velocity vT α a lower radial limit is reached

for strongly counter-passing orbits with negative parallel velocity v‖ ≈ −vT α . The upper limit

is realized for orbits with v‖ > 0 reaching beyond the separatrix. Toroidal torque density Tϕ and

partial integral torque ∆T int
ϕ (0,r) evaluated up to a certain radius are shown in Figure 2 for both,

small orbit width approximation and finite orbits. Finite orbit width leads to radial shifts and

smoothing of Tϕ . The overall result for the integral torque T int
ϕ is lower by a factor of two for

the computation with finite orbit width. In particular resonances of counter-passing orbits which

are shifted radially inwards from rϕ lead to a reduction of toroidal torque, since the perturbation

amplitude is strongly reduced at smaller radii.

Conclusion

The possibility of taking finite orbit width into account for the computation of neoclassical

toroidal viscous torque in resonant transport regimes within the Hamiltonian approach has

been demonstrated. The procedure has been applied to a representative medium-sized tokamak
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Figure 2: Radial dependency of torque density (left) and integral torque evaluated up to the ra-
dial position on the x-axis (right) for small (dashed) and finite orbit width (solid). Contributions
from a resonance of counter-passing orbits at ρpol ≈ 0.4 vanish for finite orbit width due to a
smaller pertubation amplitude at the actual orbit radius closer to the magnetic axis. Finite orbit
width has a strong influence on results for both, torque density and integral torque.

plasma with resonant magnetic perturbation and compared to computations in the small orbit

width approximation. In this case a strongly modified torque density profile is observed together

with a reduction of the integral toroidal torque by a factor of two. The former can be explained

by a radial redistribution of toroidal torque that does not influence global integral torque, while

the latter is likely caused by a different effective perturbation strength experienced by radially

displaced resonant orbits. The magnitude of the observed effect leads to the conclusion that

finite orbit width effects could considerably influence ion NTV torque in cases similar to the

one discussed here. Note that in case the effect of finite orbit width on NTV is significant, this

width should also be taken into account in computations of the perturbation field.
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