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Simulation studies on ion acceleration driven by 10 PW laser
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Ultrashort laser facilities currently built will be able to deliver up to 10 PW peak power, e.g.,
L4 beamline (1.5 kJ, 150 fs pulses) in the frame of ELI-Beamlines project [1]. The interaction
of such ultrahigh intensity laser beam with ionized solid targets includes many new phenomena
such as relativistic transparency [2] or substantial energy losses of electrons oscillating in the
laser wave by radiation reaction force (RR) [3]. We studied the interaction with the help of nu-
merical 2D3V particle-in-cell simulations including QED module calculating radiation reaction
of electrons by MC approach [4]. Namely, laser-driven ion acceleration is investigated for laser
parameters relevant to the L4 ELI beamline and for newly developed hydrogen solid cryogenic
target with thickness down to 25 um [5] and standard polyethylene foil with thickness down to
5 um.

All simulated laser pulses are linearly p-polarised, incident normally on the target and have
diameter of 5 um (at FWHM), wavelength 1100 nm and pulse duration 150 fs (approximated by
320 fs full sin” pulse). Laser peak intensity of 3 x 1022 W /cm? was used to compare simulations
with hydrogen and polyethylene targets, while intensities varying from 1.5 x 10> W/cm? to
0.375 x 10?2 W/cm? were used for simulations with hydrogen target only. Both targets are
fully ionized with electron density 56.2 n. in the case of hydrogen target and 339.2 n. in the
case of polyethylene target, respectively. Where n, is the critical density.
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where more protons are counted in the case with RR than in the case without RR. This phe-
nomenon can be explained by the difference in the motion of the electrons from the interaction
area, e.g. the backward motion of the electrons is slowed down by the interaction with laser
pulse, as it was shown for thin (1 um ) targets [6].
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more already at intensity 3 x 10>> W /cm? and RPA

mechanism also accelerates protons to lower maximum energies than TNSA (Fig. 2b). Both of
this phenomena correspond to much higher density of polyethylene target and larger mass of its
ions, therefore the hole boring velocity is slower and RPA mechanism is less efficient.

At the later time the protons previously accelerated by RPA reach the rear side of the target
and are subsequently accelerated by the TNSA field. Separation of protons with energy in range
225-300 MeV (green) accelerated by pure TNSA (denoted as 1) and this mixture RPA/TNSA
mechanism (denoted as 2) is still clearly visible at the late time of simulation (340 fs) in Fig.
3a).

After the laser pulse burns through the target, another distinguishable mechanism arises from
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the laser interaction with the target debris, which is still overdense, but become relativistically

transparent. These conditions lead to more efficient volumetric acceleration of electrons [7],

while there are still enough electrons to efficient
coupling with protons [8]. This mechanism, de-
noted as 3 in Fig. 3a), further accelerates a rela-
tively small fraction of protons to energy over 600
MeV (cyan), while other mechanisms accelerates
protons under 400 MeV (magenta), in the case of
CH2 target. This mechanism also accelerates pro-
tons to highest energy in the case of hydrogen tar-
get (Fig. 3b). In Fig. 3c) the proton energy spec-
tra are shown. The maximum energy of protons ac-
celerated from the hydrogen target (blue) is near
the maximum energy of protons originated from
the polyethylene target (green), however the num-
ber of accelerated high-energy protons is substan-
tially higher in the case of hydrogen target. This
phenomenom is caused by the different efficiency
of hole boring mechanism. In the case of hydrogen
target (Fig. 3b), only about 53% of protons accele-
rated over 400 MeV (yellow) are located inside the
black rectangle, which surrounds the area, where
the laser pulse propagating through the debris is lo-
cated. Therefore about 47 % of these protons are
accelerated by the mixture RPA/TNSA mechanism.
On the contrary, the corresponding area in Fig. 3b
(denoted as 3) contains 100 % of this type of pro-
tons in the case of polyethylene target.

To better understand the acceleration mecha-

nisms in interaction with lower laser intensi-
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Figure 3: Proton energy layers in the simu-
lations with a) hydrogen and b) polyethylene
targets and c) proton energy spectra at time

instant 340 fs.

ties, more simulations were produced in the case of hydrogen target. Maximum en-

ergy of different mechanisms are shown in Fig. 4. The mechanism of laser-debris in-

teraction was observed only in the simulations with laser intensity high enough to burn

through the target, ie. 3 x 1022 W/cm? and 1.5 x 10?2 W/cm” and accelerated pro-
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tons to significantly higher energy than TNSA. In the case of intensity 0.75 x 102
W /cm?, mixture RPA/TNSA mechanism accelerates protons to energies similar to TNSA
and in the case of intensity 0.375 x 10*> W/cm?, mixture RPA/TNSA mechanism al-
most did not occurred and TNSA mechanism accelerated protons to highest energies.
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The simulations with lower intensities showed the RPA/mixtures and pure TNSA mechanisms,

strong influence of non purely TNSA mechanisms

till intensity 0.75 x 10> W/cm? (=~ 2 PW laser

respectively.

power), which accelerated protons to energies over 200 MeV.
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