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Target Normal Sheath Acceleration (TNSA) is a method for accelerating ions using high

intensity laser pulses hitting solid density targets. Relativistic electrons travel through the target

forming a space charge sheath at the rear surface. The electric field in this sheath accelerates ions

to high energies. For pulse durations shorter than the electron traversal time the fast electrons

forming the sheath will have a non-equilibrium distribution with a beam like component. For

longer times the electrons can reach equilibrium in the form of the Maxwell-Jüttner distribution.

Most previous theories invoke a Boltzmann factor to model the electron density. This implies

that the fast electrons have reached an equilibrium distribution. In this contribution a kinetic

theory of a planar rear sheath for arbitrary electron distribution functions is presented. It is

found that the far field is determined by the high energy tail of the distribution.

When accounting for electrons escaping the sheath region a finite potential drop over the

sheath is found. This finite potential drop implies a maximum energy for ions being acceler-

ated in the sheath field. The results are generalised to spherical sheaths. For a realistic electron

distribution for short laser pulses, maximum ion energies of around 66MeV are predicted.

We assume the case of a planar target, consisting of electrons and heavy, immobile ions. The

ion density ni is assumed to be constant inside the target and zero in the region outside the

target. The analysis makes use of the normalised quantities

ϕ =− eΦ

kTh
, p =

p̃√
mekTh

, x =
x̃

λD
, nk =

ñk

n0
(1)

and the dimensionless parameter α =
√

mec2

kTh
. Here we use a tilde to denote the unnormalised

quantities. Φ is the electrostatic potential, p̃ and x̃ are the un-normalised momentum and the

position, ñk is the number density of species k, Th is a characteristic temperature of the fast

electron distribution function, λD is the electron Debye length, and n0 is the equilibrium electron

density inside the target.

The electron density ne is divided into a cold background population and a hot electron beam

ne = nc + nh. The cold electrons are assumed to be in thermodynamic equilibrium and their

density is given by the Boltzmann factor

nc = nc0 exp(−ϕTh/Tc) (2)
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where Tc is the cold electron temperature. The hot electrons, on the other hand, are modelled

kinetically using the time independent, relativistic, electrostatic Vlasov equation

p
γ

∂x fh +ϕ
′
∂p fh = 0. (3)

Here fh = fh(x, p) is the hot electron distribution function, and γ = (1 + (p/α)2)1/2 is the

relativistic gamma factor. Vlasov’s equation assumes that the hot electrons are collisionless. In

addition we have Poisson’s equation

ϕ
′′ = n(x) (4)

Using the method of characteristics together with energy conservation Vlasov’s equation can

be formally solved, resulting in the hot electron density as a function of the potential

nh(ϕ) = 2
∫

∞

0
finj(

√
p2 +2

ϕ

α

√
p2 +α2 +

ϕ2

α2 ) d p. (5)

In this equation finj is the distribution function of electrons injected into the system by the laser.

The total charge density across the target and the sheath is then given by

n = H(x)−nc0 exp(−ϕTh/Tc)−nh(ϕ) (6)

where H(x) is the Heavyside step function describing the normalised ion density which is unity

inside the target and zero outside. Given this charge density, Poisson’s equation can be inte-

grated to provide the potential in the sheath as well as inside the target.

We assume that the injected hot electrons can be described by a shifted Maxwell-Jüttner

distribution

finj(p) =
nh0

αK2(α2)
exp
(
−α

√
α2 +(p− p0)2

)
(7)

where p0 is the directed momentum component. The normalised average kinetic Ek energy of

the Maxwell-Jüttner distribution is made up of the thermal energy θ = 1/α2 and the directed

beam energy
√

1+θ p2
0−1,

Ek = θ +
√

1+θ p2
0−1. (8)

In addition, let δ be the ratio of beam energy to the total kinetic energy

δ =
Ek−θ

Ek
. (9)

Fig. 1 shows the potential profiles for Ek = 1, for different values of δ , and the corresponding

electric fields. One can observe that the sheath potential is reduced for larger values of δ , i.e.

when the hot electrons carry more of their energy in form of directed energy. At the target
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Figure 1: Normalised sheath potential profiles (left) and fields profiles (right) for Ek = 1 and different beam ratios

δ .

surface, all profiles start off with a similar electric field, as can be seen in the right panel of

Fig. 1 although the field is reduced slightly for the largest beam ratio. At some distance from

the surface the field decreases with δ . This can be understood in terms of high energy tails of

the electron distribution function. As the beam energy increases, the temperature decreases to

keep the total energy constant. This means that there are less electrons in the high energy tails

of the distribution. For lower temperatures the number of electrons that are located further from

the target is reduced. Following Gauss’ law this implies that the electric field is substantially

reduced with the electron temperature.

In general we find that the sheath field is directly determined by the shape of the distribution

function. A rapid decrease of the distribution function at high energies leads to a small electric

field at large x and a slow increase of the potential with x. The field distribution becomes more

kinked with increasing beam ratio, showing two distinct domains, an almost linear fall-off near

the surface and a power law decay further away. The largest change in slope is located where

the bulk of the electrons are reflected back towards the target’s rear surface.

To determine a maximum sheath potential, and therefore the maximum ion energies, it is

assumed that the high energy electrons can escape from the sheath by some mechanism and are

therefore lost from the electron population. In order to allow the electrons to escape in a one

dimensional model, we have to allow for a residual charge density nr in the sheath region. This

charge density allows a return current to be set up as the fastest electrons escape, preventing a

further charge build-up of the target. The residual charge density can be very small and might be

due to the pre-pulse or simply due to the non-ideal vacuum in the chamber. It is found that the

dependence of the maximum ion enery on the residual charge density is logarithmic. As such,

the exact numerical value of nr has little influence on the results. We assume that nr is due to

the non-ideal vacuum in the experimental setup with a residual pressure of 10−4Pa. The laser

44th EPS Conference on Plasma Physics P1.216



✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

✄�✥

✥ ✥☎✂ ✥☎✆ ✥☎✝ ✥☎✞ ✁

❊
♠
✟✠
✡
☛
☞
✌

❞

s✍✎✏✑✒✓ ✔✕✖✗✒✘✘✎✕✙✚ ✛✘✕✙✕✜
s✍✎✏✑✒✓ ✔✕✖✗✒✘✘✎✕✙✚ s✛✍✒✜✎✢✕✘

❙✍✒✜✘✣✢✤✚ ✛✘✕✙✕✜
❙✍✒✜✘✣✢✤✚ s✛✍✒✜✎✢✕✘

Figure 2: Maximum achievable ion energies for various models. Curves labelled "shifted Maxwellian" are cal-

culated using the distribution function Eq. 7 and depend on the beam ratio δ . Curves labelled "Sherlock" are

calculated using [2]. Energies are plotted for both the planar model and the spherical model.

has a wavelength of 1µm and an intensity of 1021W cm−2. Using the ponderomotive scaling

the maximum achievable ion energies can be determined.

Fig. 2 shows the maximum achievable ion energies for fast electron distribution functions

given by Eq. 7 compared with fast electron distrubtion given by Sherlock [2]. For a planar

sheath Sherlock’s distribution results in a normalised sheath potential of 6.31 and maximum

energies of singly charged ions of about 84MeV. For a purely thermal distribution, Eq. 7 with

δ = 0, the potential drop is as high as 24.5 which corresponds to ion energies of 325MeV.

The model has been extended to account for geometrical effects in a spherical sheath. Using

a spot radius R = 5µm and Sherlock’s distribution function, we now obtain a maximum ion

energy of 66MeV. In contrast for a pure Maxwellian, δ = 0, the maximum achievable energy is

reduced to 170MeV, and for an almost monoenergetic electron beam δ = 0.95 this is reduced

to as low as 22.2MeV.

These numbers should be seen as upper limits to the maximum ion energies. Assuming that

Sherlock’s distribution function, holds for ultra-short pulses, we can conclude that ion energies

cannot exceed 66MeV. Of course other factors might reduce this limit further. Note that this

result, for all other parameters held constant, scales directly with the fast electron temperature.

An increase in laser intensity will therefore increase the ion energies by a factor given by the

ponderomotive scaling.
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