44*" EPS Conference on Plasma Physics P1.403

Of electrostatic envelope modes and freak wave modeling in plasmas:
revisiting a widespread fallacy

Toannis Kourakis', Omar Bouzit? and Ibrahem S. Elkamash!-3

I Centre for Plasma Physics, Queen’s University Belfast, BT7 INN Northern Ireland, UK
2 Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Physics,
University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111, Algeria

3 Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Abstract

Recent theoretical considerations link the nonlinear Schorddinger equation (NLSE)
to localized envelope forms, known as breathers, which have been proposed as proto-
types for extreme-amplitude excitations (freak waves, rogue waves) in various areas, in-
cluding modulated-amplitude wavepackets in plasmas. The analytical methodology for the
derivation of the NLSE is briefly reviewed, and its physical implications are discussed.
A widespread “shortcut” methodology, relating it to small-amplitude theories for solitary
waves, is shown to be inherently flawed, as regards its application in fluid plasma theory

(notwithstanding the potential value of the method in other areas, e.g. in hydrodynamics).

1. Introduction. A number of recent studies have been dedicated to extreme amplitude
excitations (freak waves, or rogue waves, RWs) occurring in plasmas [1]. Expressed as localized
envelope forms (bright solitons, or breathers), these are normally studied via multiscale tech-
niques. Applied to a plasma-fluid model, the method leads to a nonlinear evolution equation in
the form of a nonlinear Schrodinger equation (NLSE), describing the slowly varying envelope
v of the electrostatic (ES) potential (¢) envelope [2, 3]. In an analogous (algebraically less te-
dious, but far less rigorous) manner, some recent studies have relied on the NLSE approach, but
using small-amplitude (e.g., Korteweg — de Vries, KdV) type equations [4] as starting point.

We shall show that the latter method, however well established in water dynamics [5], is in-
trinsically flawed, and in fact leads to dubious physical predictions, when applied to ES plasma
modes. In particular, the method predicts wavepackets propagating above the plasma “sound
speed”. Furthermore, it may also lead to erroneous criteria for the existence of envelope modes.

2. Modeling considerations. = We start by reviewing some well known paradigms, based
on generic nonlinear partial-differen- tial equations (PDEs): these are derived from plasma fluid
models, in the small-amplitude approximation, via so-called reductive perturbation theory [4,

6]. Only one-dimensional (1D) models will be considered in the following.
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Gardner equation. Let us shall consider, as starting point in our discussion, the extended

Korteweg-de Vries (eKdV), also known as the Gardner equation:
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Here, A, A’ and B are real coefficients, usually given as functions of the plasma configuration
[6]. Tt is understood that B > 0, while A and A’ may be either positive and negative, a fact that
affects the nature (polarity) of analytical solutions. In a plasma-fluid theoretical context, the
Gardner equation is derived via reductive perturbation theory [6], assuming small-amplitude
excitations off-equilibrium (i.e., @ ~ €@ + ... for the electrostatic potential, and analogous ex-
pansions for the various fluid state variables) based on a particular variable “stretching”, so
that the space and time variables are X = &(x — Upt) and T = &3, respectively (where £ < 1
is a small real parameter). Note, for the sake of “book-keeping”, that the derivation of Eq. (1)
relies on a restricting assumption, namely that the quartic nonlinearity coefficient A is small
but finite, hence higher orders of nonlinearity must be resorted to: this is often referred to as
a near-critical plasma configuration [6]. Importantly, Uy in the above variable Ansatz is a real
parameter which is determined during the multiscale perturbation procedure, and is a priori not
known beforehand. However, it is found through a compatibility constraint to be equal to the
plasma sound speed ¢ (= (kgT,/ m,-)l/ 2 e.g., for e-i plasma, actually recovered as the small-k
limit of the phase speed ®/k. Various solutions of Eq. (1) exist, in fact — most interestingly —
characterized by either positive or negative pulse polarity; see e.g. in [7] and references therein.

Korteweg de-Vries (KdV) equation. The KdV equation is formally recovered from (1), upon
settmg A’ = 0. Tts derivation in fact relies on a different scaling, namely X = £ (x — Upt) and
T = e@t, to be precise; Uy = c;, as above. The well known pulse-soliton solution of the KdV
eq. is of the form ¢ ~ ¢ysech?(X — VT)/L, where the pulse’s maximum amplitude ¢y and the
spatial extension (width) L are known functions of A and B, satisfying ¢y L> =constant [4].

Modified Korteweg de-Vries (mKdV) equation. The mKdV equation is recovered from Eq.
(1) for A = 0. The exact derivation of the mKdV equation from a plasma fluid model is mean-
ingful only at (strictly) critical plasma configuration (viz., A = 0 is satisfied by the plasma
constituents) [6]. Various pulse-shaped solutions of the mKdV eq. exist.

A common feature of the above (KdV family of) equations is the fact that their solitonic
solution(s) is (are) expressed in terms of the argument, say, & = X — VT; for the KdV. eq.,
& = €!/2[x — (cy+ €V) 1], recovering the original (physical) space and time coordinates x and 7,
in the laboratory frame. The variable V is thus to be interpreted as the velocity increment (above

the sound speed) of the pulse soliton. Similar consideration hold for all of the above equations.
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One must therefore bear in mind that the KdV theory models (only) small-amplitude, weakly
super-sonic soliton structures, as ¢ (~ €) modeled by Eq. (1) (or any of its variants) actually
travels little faster than the sound speed. (Statement 1)

3. Amplitude modulation formalism — scenario # 1: a rigorous approach. The Nonlinear
Schrodinger equation (NLSE) can be obtained from fluid plasma models in a similar (yet not
identical) method to the one described above, via a multiple scales technique. The method relies
in adopting multiple space and time scales, in order to distinguish the fast (carrier wave related)
scales (Xo = x, Tp = t) from the slower (envelope related) scales (X; = €x, Xo = exx, .. T = et,
Ty = €°t, ...). Small deviations are considered of all plasma state variables from the equilibrium

state, i.e.  =0+e¢p() 4290 =3

- _1€" ¢y, and so on. Harmonic generation is accounted

for by assuming, at each order n, ¢, =X7° d)l(n) (Xp+, T+ ) el kx—on),
The (carrier wave) dispersion relation (DR) @ = (k) is obtained, relating the fundamental
frequency o to the wavenumber k. A tedious analytical procedure [3] leads to the equation:
i%—fw%wlwlzw:o, 2)
where v = (])1(1) and the (slow) independent variables are § = X| — v T} = €(x —v,t) and T =
T = £2t. In Eq. (2), the dispersion coefficient is P = ®” (k) /2, while the nonlinearity coefficient
Q is obtained analytically, and may be a tedious function of the wavenumber k, also involving
intrinsic plasma parameters (e.g. density or temperature of various plasma constituents).

The NLS equation (2) is an integrable equation [8] that possesses exact solutions, in the form
of envelope solitons of various types [3]. A class of solutions (obtained if PQ > 0), known as
breathers, have been proposed as prototypical analytical models for RWs [9]. We won’t go into
detail here; it suffices to say that these solutions are given by analytical functions of a travelling
coordinate & = § — iit; therefore, the free variable i denotes the velocity increment above the
group velocity v,. (Recall that the variables entering the NLSE are in fact  and 7, i.e. not x, t.)

Importantly, the bright soliton solution of Eq. (2) [3] (and, in fact, the entire family of breather
solutions) are functions of a travelling coordinate, say, { —iit, which may be interpreted as €[x —
(vq + €ii)t] in terms of the original coordinates. The (envelope) amplitude y - as described by
(2) — therefore travels at (or, in fact, slightly above) the group velocity v, (# c;).(Statement 2)

4. Amplitude modulation formalism — scenario # 2: a flawed approach.  Various the-
oretical studies in plasmas have undertaken a derivation of the NLSE (2) based on the small-
amplitude Eq. 1 (or variants thereof) [10]. In more recent cases, e.g. [11, 12], the authors have
proceeded by proposing a freak-wave related interpretation of the erroneous NLS equation de-

rived. A very interesting experiment on ES freak waves in plasmas with negative ions [13] has

actually based its interpretation on the assumption that freak wave formation relies on the reali-
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sation of a critical plasma configuration, so that the associated mKdV equation [10] may be the
(only) relevant starting point for the prediction of the occurrence of freak waves. We argue that
this methodology is misleading and clearly gives wrong results. In order to see the intrinsic flaw
in this approach, we may consider a simple case study. Let us consider the derivation of the NLS
equation from the Gardner eq. (1), by making use of the formalism in Sec. 3 above. The dis-

i(le—a)l T)

persion relation derived upon linearizing (1) by setting ¢ ~ e isw = —ka, leading

to vg = —3Bk? and P = @] (k1)/2 = —3k;. As a first remark, both v, and P are negative Vi,
regardless of the particular plasma specification considered in deriving (1) (a rather dubious
fact). P, is here always negative. Further analysis leads to an expression for Q = k; (% — A ) .

Ist paradox: let us assume that A’ = 0 (KdV equation) for a while. One finds that P < 0 <
Q = PQ < 0 for all values of A and B (regardless of the plasma configuration, that is!), hence,
there is no modulational instability whatsoever. This is a wrong result, as the NLSE is known
to give both stable and unstable regions, even for the simplest (e.g. electron-ion) plasmas [2].

2nd paradox: let us now assume that A = 0 (mKdV equation). One easily draws the conclusion
that PQ > 0, hence modulational instability (and breather, or freak wave, occurrence) is always
possible [3], Vk;. This is clearly not a generally valid result. This method, adopted in [10], was
later apparently lent to the interpretation of the (unique of its kind) “critical-density” negative-
ion plasma experiment on freak waves by Bailung et al [13].

'(kIX—a)l T)

Upon careful inspection, one realizes that the “KdV waveform” ¢’ is actually tan-

tamount to /€’ kix—(cski—€Bi})] (cf. the KdV variable stretching in Sec. 2 and Statements 1-2
above). The KdV equation has been formulated in a reference frame moving at the sound speed,

by balancing nonlinearity and dispersion, thus any derivation of the NLSE is of limited value.
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