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Abstract

Kinetic Alfvén waves (KAWSs) have been studied in a low-3 magnetized plasma, consisting
of positively charged ions and two non-Maxwellian (kappa-distributed) electron populations.
Linear and nonlinear analysis reveals the impact of suprathermal electrons on linear dispersion
characteristics and on localized KAW modes (pulses). Super-Alfvénic speed negative potential
structures are predicted via a Sagdeev-type method, whose characteristics are briefly discussed.

Introduction. In a strongly magnetized plasma i.e. when 8 < 1, kinetic Alfvén (KA)
waves (KAWs) arise when the perpendicular wavelength is of the ion gyroradius p; scale. In
these conditions, light electrons follow the magnetic field lines. Electrons and ions respond
differently to magnetic field perturbations, leading to charge separation and formation of KAWs.

Plasmas with a co-existence of two electron populations (at different temperature) are ubiq-
uitous in Space. Studies of KAWs in such (two-electron-temperature, 2elT) plasmas start with
Treumann et al.[1], who showed that the plasma 8 plays a crucial role in the occurrence
of rarefactive and compressive density excitations, at either sub- or super-Alfvénic speeds.
Berthomier et al. [2] investigated solitary KA waves in 2elT plasma, and rigorosuly established
the existence of either compressive or rarefactive KA solitary waves, in such a plasma config-
uration. Chakraborty and Das [3] reported the propagation of three wave modes, viz. kinetic
Alfvén waves, ion-acoustic waves and electron-acoustic waves in 2elT plasma, by adopting a
Korteweg - de Vries/Zakharov-Kuznetsov (small-amplitude) approach. Very recently, Kaur and
Saini [4] discussed the formation of small amplitude KAWSs in a dusty 2elT plasma, making use
of the Korteweg - de Vries (KdV) equation. Positive potential solitary structure were predicted.

Space [5] and experimental [6] plasmas are often characterized by non-Maxwellian electrons,
identified by a distinct long-tailed (suprathermal) feature in their velocity distribution. These are
effectively modelled by the kappa (k) distribution function [7] known by now to affect not only
linear wave characteristics [5, 8], but also the properties of solitary waves [8, 9].

In this paper, we investigate from first principles the characteristics of linear and nonlinear
waves in a plasma with two kappa distributed (“hot” and “cold”) electron populations.

Fluid Model equations. A magnetized plasma, consisting of positively charged (cold)

ions (mass m; and number density n;), “cold” electrons (mass m, and number density n.) and
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relatively “hotter” electrons (mass my, and number density n;) is considered. The plasma f3

8nnjoKpTesy . .
B—Oz, here, T:gff is the

effective temperature, n;g is the equilibrium ion number density, By is the background magnetic

parameter satisfies the condition m /mi < B < 1, where f =

field directed along z-axis and Kp is Boltzmann’s constant. The basic governing equations are:
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where the electric field components derive from potential functions as E, = E| = —34)” /dx

and E; = E|| = —dy /dz respectively, Q; = eB/m; denotes the ion cyclotron (gyro-)frequency

and the plasma fluid quantities bear their usual meaning. The neutrality condition n; ~ n. + ny,

—Kj+1/2
is assumed. The electron number density is given by n; =nj | 1 — e—w”3 , for
KpTj(kj—3)

J = ¢,h (“hot*, “cold”), in terms of the respective temperature 7; and nonthermal index ;.

Linear Dispersion Relation. Eqgs. (1) are linearized, by assuming all the perturbed quanti-
ties to be proportional to exp[i(k x + kjjz— ot)], where k| , k| and @ are the perpendicular and

parallel wave vectors and frequency respectively, leading to the dispersion relation
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eraged) plasma-f and gyroradius analogues. We have also defined Csz1 = KBT C = K}ffh,
B} C? C2 . .

vﬁ 47m(())m1, pl1 = 9521 and pl2 = Sl%. Suprathermal electrons evidently affect the dispersion
characteristics (via k. ;). In the limit f3, rr < 1, relation (2) recovers w? = H <1 +i2 1p; ff>

Parametric Analysis. In Fig. 1(a), we have shown the combined effect of cold elec-
tron number density (n.9) and superthermality on the wave’s phase speed. The phase speed is
clearly reduced as the cold (superthermal) electron component density increases, with respect
to the Maxwellian no-cold-electron case (k. — oo, n.9 = 0) here given by the solid (blue) curve.
This may be due to the fact that the inclusion of cold species makes the wave heavier and sup-
presses the parallel current, thus slowing down the wave. A decrease in K, (i.e., farther off the
Maxwellian) also reduces the phase velocity of the wave as shown in Fig. 1(b): KAWs appear
to be slowed down in a superthermal plasma. Finally, an increase in cold electron temperature

T, appears to accelerate KA waves, as evident in Fig. 1(c).
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Figure 1: The wave frequency o is depicted against the perpendicular wavevector k ; ; for k| =
10~%cm™! (<« k). In (a), the solid (blue) curve corresponds to n.o =0 cm 3, Kk, — o0, T, =8
eV, T, = 1100 eV, njo = 75 cm 3, nj9 = 0.07 cm—3; for the rest of the curves, kj, = 4. Density

values in cm 3. In (b) and (c), the solid (blue) curve corresponds to kK, = 2, nq, = 2.5 cm 3.

Nonlinear Analysis.
To proceed with the analysis, we have rescaled Egs. (1), as follows (capital letters are used

Vi(x,y, 5)s
=23 T = @, (X,Y,2) = 5 and
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for dimensionless variables): N; = Riome Viley2)
i,c,h)o >

(0,v) = eE(ZL—T’:;/J'J), where T,pr = T Tynio/ (neoTh + npoTe) and T.(T}) is the temperature of cold

m;
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(hot) electrons, C; = (T,) is the ion-acoustic (plasma “sound”) speed, ®,; = (—’0)

1/2
KsT,sr . . .
#) is an effective Debye-screening length.
1

is the ion plasma frequency and Ap = (

We have adopted the (Sagdeev) pseudopotential methodology, by assuming that all state vari-
ables depend on the single moving coordinate & = [, X +[,Z — MT (propagation in the x-z plane
is assumed). Here, [, and [, = +(1 — lxz)l/ 2 represent direction cosines and M is the ion-acoustic
Mach number M = CKS, where V is the soliton speed and Cs was defined above. A lengthy but
straighforward procedure leads to a pseudo-energy balance equation in the form of the ordinary-

2
differential equation (ODE): 1 [j—‘g] +U(y) = 0, where U(y) is given by
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2
We have defined Q = % and MA = My/l,, where the “Alfvén Mach number” is defined as

1/2
My = (%) M = ¥ with respect to the Alfvén velocity vy4.

va

A meticulous numerical investigation of the properties of solitary waves, arising as solutions
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Figure 2: Behavior of the Sagdeev potential U(y) vs y for negative potential structures at
ke =3, ky =3, & =0.1, , = 0.01, 0 =25, 12 =0.15, = 0.3, § = 0.1 and M = 1.2,
represented by solid (blue) curve. Dashed (black) curve corresponds to k. = 3.5, dotted (red) to
K, = 23, dotted-dashed (red) curve to Mf"z = 1.3 and dotted-dashed (green) to § = 0.32.

of the above ODE, has been carried out, and the details (omitted here) will be reported in
a lengthy report, in preparation. Negative polarity potential structures (y pulses) and bipolar
electric field structures are obtained numerically, corresponding to the negative values (and
roots) of the Sagdeev pseudopotential U; see Fig. 2. Based on an analysis of U, we see that the
amplitude and depth of the potential well significantly increases, as either of k., k5, and plasma
B increase(s); this effect is depicted in the dashed (black) curve, dotted (red) curve and dotted-
dashed (green) curves respectively in Fig. 2. On the other hand, kj, appears to have a very small
effect on solitary KA wave characteristics. Finally, an increase in M), leads to a decrease in both

amplitude and depth of U, as depicted by the dotted-dashed (red) curve in Fig. 2.
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