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The gradient-drift instability in inhomogeneous partially-magnetized plasmas with transverse

current is investigated in the framework of advanced two-fluid model, which includes finite

electron temperature and finite electron Larmor radius (FLR) effects (in sense of Padé ap-

proximants). Such an instability is typical for plasmas immersed in crossed external electric

and magnetic fields (in particular, for Hall ion sources, Penning discharges, closed-drift Hall

plasma thrusters) [1]–[3] and can be a source of turbulence and anomalous electron mobil-

ity in such systems [4]–[6]. It is shown that, in general, the electron inertia and FLR effects

stabilize the short-wavelength perturbations and, in some cases, can completely suppress the

high-frequency short-wavelength modes leading to the development of long-wavelength low-

frequency (in comparison with the lower-hybrid frequency,ωlh) gradient-drift instability.

The analysis is performed in the framework of two-fluid theory. The ions are considered to

be cold and unmagnetized, and their behavior is described by the equation of motion

∂vi

∂ t
+(vi ·∇)vi =

e
mi

E, (1)

and by the continuity equation
∂ni

∂ t
+∇ · (nivi) = 0. (2)

Herevi andni are the ion velocity and density,E is the electric field,e is the proton charge and

mi is the ion mass.

As for the electrons, to include the effects due to their thermal motion we use the electron

momentum equation in the following form

∂ve

∂ t
+(ve ·∇)ve =− e

me

(
E+

1
c

ve×B
)
− ∇pe

mene
− ∇ ·πe

mene
, (3)

whereve, pe, ne are the electron velocity, pressure and density,c is the speed of light,B is

the magnetic field andπe is the electron gyroviscosity tensor, which explicit expression in a

curvilinear inhomogeneous magnetic field is given in [7]. The electron density is defined by the

electron continuity equation
∂ne

∂ t
+∇ · (neve) = 0. (4)
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The electron temperatureTe = pe/ne is assumed to be homogeneous and its perturbation will

be neglected too. To close the set of equations (1)–(4) the Poisson equation is used:

∇ ·E = 4πe(ni −ne). (5)

We consider the problem in the simplified slab model in Cartesian coordinates{x,y,z} with

thex coordinate in the direction of the applied to plasma external electric fieldE0 = E0ex (or the

direction of plasma inhomogeneity),z coordinate along the predominant direction of magnetic

field B0 = B0ez, y coordinate in the periodic azimuthal direction. Hereafter the subscript “0”

implies the equilibrium (unperturbed) quantities.

For purely electrostatic perturbationsE′ =−∇φ ′ with the frequencyω in the range between

the ion and electron cyclotron frequencies and propagating strictly perpendicular to the mag-

netic field,k = {kx,ky,0}, the above model gives the following local dispersion relation

1+
ω2

pe

ω2
Be

· 1

1+k2
⊥ρ2

e
−

ω2
pi

(ω−kxv0i)2 +
1

k2
⊥d2

e
· 1

1+k2
⊥ρ2

e
· ω?e− ω̄D

ω−ωE− ω̄D
= 0. (6)

HereωBe= eB0/mec is the electron cyclotron frequency,ωpα =
√

4πn0e2/mα – the plasma fre-

quencies,α = (i,e), v0i – the equilibrium ion velocity,de = (Te/4πe2n0)1/2 – the electron De-

bye radius,ρe = (Te/meω2
Be)

1/2 – the electron Larmor radius,k2
⊥ = k2

x +k2
y; ωE = kyV0E,ω?e =

kyV?e, ω̄D = kyVD(1+2k2
⊥ρ2

e)/(1+k2
⊥ρ2

e), and the electron drift velocities,V0E,V?e,VD, are de-

scribed by the expressions:

V0E =−cE0/B0, V?e =−(cTe/eB0)d lnn0/dx, VD =−(2cTe/eB0)d lnB0/dx.

Dispersion relation (6) includes the equilibrium electron and ion flows perpendicular to the

magnetic field, the electron inertia and FLR (in sense of Padé approximants) effects, and the

Debye effects. This dispersion relation generalizes the earlier known dispersion relations of

Refs. [3]–[6], [8]. In addition to the dispersion relations of Refs. [3]–[6] it takes into account

the electron temperature effects (electron magnetic drift and FLR effects) and in addition to the

dispersion relation of Ref. [8] – the electron inertia and FLR effects.

A lengthy but rather straightforward analysis shows that asufficientcondition of stability of

considered plasma perturbations is(
eE0

Te
+

1+2k2
⊥ρ2

e

1+k2
⊥ρ2

e
· d
dx

lnB2
0 +

kx

ky

ωBi

cs

v0i

cs

){
d
dx

lnn0−
1+2k2

⊥ρ2
e

1+k2
⊥ρ2

e
· d
dx

lnB2
0

}
≤ 0. (7)

This condition guaranties that both long-wavelength, lower-frequency and short-wavelength,

higher-frequency (of orderωlh and higher) perturbations are stable. For azimuthal perturbations
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with kx� ky and negligible inhomogeneity of the magnetic field strength this condition takes the

form which is complementary to the Simon-Hoh (S-H) instability conditionE0 ·∇n0 < 0 [9, 10].

Neglecting the FLR effects and equilibrium ions velocity in Eq. (7) one can obtain the extended

S-H stability criterion for the inhomogeneous magnetic field:(V0E +VD)(κn−2κB) > 0.

The generalnecessary and sufficientcondition of gradient drift instability is formulated as σ̄2 > µ1, for λ ≤ 0;

µ1 < σ̄2 < µ2, for 0 < λ < 1,
(8)

whereλ = 1−αky/k2
⊥σ̄ , µ1,2 =

[
27−18λ −λ 2∓

√
(27−18λ −λ 2)2−64λ 3

]
/8λ 3,
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]
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⊥ρ2

e)
,
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d ln(n0,B0)

dx
, κ̄B =
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e
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·κB, ω0 ≡ ωpi
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.

The full picture of instability is summarized in Fig. 1. The boundaries of instability region

are described by the curves̄σ2 = µ1,2 – see Eq. (8). Atλ ≤ 0 the instability region is located

above the curvēσ2 = µ1 and at 0< λ < 1 – between the curves̄σ2 = µ1 andσ̄2 = µ2, which

intersect at the pointλ = 1. The region withλ > 1 is stable.

Figure 1:Stability diagram and contour plots of frequencies of unstable modes in the planeσ̄2–λ . White

color indicates the stability region, the instability region is colored. Dashed curve shows the stability

boundary with no account of electron inertia; the corresponding instability region locates above this

curve. Oscillations with frequency higher thanωlh are shown with black color.

Now we fix the equilibrium parameters and follow the parametric curveσ̄2(λ ) given by pa-

rameterk⊥ on the stability diagram. For azimuthal modes the curve is described by the relation
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σ̄2 = ασ/(1−λ ). With no FLR effectsα andσ depend not onk⊥ and the dependencēσ2(λ )

– see black line with green circles in Fig. 1 – appears to repeat the behavior of the stability

boundary with no account of electron inertia,σ̄2 = 1/4(1−λ ), [8]. Thus, with no account of

electron inertia the whole spectrum of perturbationsk⊥ ∈ (0,∞) is unstable atασ > 1/4; at

ασ < 1/4 all modes are stable. When we take into account the inertia effects the cut off of

the short-wavelength modes occurs with the maximal possiblek⊥max for unstable modes de-

fined by the relationασ/(1−λ ) = µ2; consequently, the growth rate of instability is limited

from above. Also the additional region of instabilityµ1 < σ̄2 < 1/4(1−λ ) near the instability

threshold (small̄σ ) appears.

The FLR effects make the picture much more complex, since with their accountα andσ de-

pend not only on equilibrium plasma state, but are also functions ofk⊥. As a consequence, the

functionσ̄2(λ ) is not necessarily an increasing monotonic function and its behavior is strongly

determined by equilibrium parameters. In the example given in Fig. 1 the FLR effects totally

change the behavior of̄σ2(λ ): it decreases with the growth ofk⊥ and the stabilization of the

short-wavelength modes takes place due to the intersection ofσ̄2(λ ) with the lower stability

boundary,µ1 – see black line with red circles in Fig. 1. As one can see from Fig. 1, the fre-

quency of unstable modes nearµ1 is low in comparison with the lower-hybrid frequency. The

additional analysis shows that even small FLR effects can completely stabilize high-frequency

short wavelength modes near the instability threshold.
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