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The gradient-drift instability in inhomogeneous partially-magnetized plasmas with transverse
current is investigated in the framework of advanced two-fluid model, which includes finite
electron temperature and finite electron Larmor radius (FLR) effects (in sense of Padé ap-
proximants). Such an instability is typical for plasmas immersed in crossed external electric
and magnetic fields (in particular, for Hall ion sources, Penning discharges, closed-drift Hall
plasma thrusters) [1]-[3] and can be a source of turbulence and anomalous electron mobil-
ity in such systems [4]-[6]. It is shown that, in general, the electron inertia and FLR effects
stabilize the short-wavelength perturbations and, in some cases, can completely suppress the
high-frequency short-wavelength modes leading to the development of long-wavelength low-
frequency (in comparison with the lower-hybrid frequenoy,) gradient-drift instability.

The analysis is performed in the framework of two-fluid theory. The ions are considered to

be cold and unmagnetized, and their behavior is described by the equation of motion

W + (Vi . D)Vi = EE, (1)
and by the continuity equation
an;
a—t'+m-(nivi):o. (2)

Herev; andn; are the ion velocity and densitly, is the electric fielde is the proton charge and
m is the ion mass.
As for the electrons, to include the effects due to their thermal motion we use the electron

momentum equation in the following form
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whereve, pe, Ne are the electron velocity, pressure and densitig the speed of lightB is
the magnetic field andae is the electron gyroviscosity tensor, which explicit expression in a
curvilinear inhomogeneous magnetic field is given in [7]. The electron density is defined by the
electron continuity equation

—— 40 (neve) = 0. 4)
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The electron temperatuf = pe/Ne is assumed to be homogeneous and its perturbation will
be neglected too. To close the set of equations (1)—(4) the Poisson equation is used:

O0-E =4me(n —ne). (5)

We consider the problem in the simplified slab model in Cartesian coordifratgg} with
thex coordinate in the direction of the applied to plasma external electricHigd Eqge (or the
direction of plasma inhomogeneity) coordinate along the predominant direction of magnetic
field Bo = Boeg, y coordinate in the periodic azimuthal direction. Hereafter the subscript “0”
implies the equilibrium (unperturbed) quantities.

For purely electrostatic perturbatioBS= —¢’ with the frequencyw in the range between
the ion and electron cyclotron frequencies and propagating strictly perpendicular to the mag-
netic field,k = {ky, ky, 0}, the above model gives the following local dispersion relation
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Herewge = eBy/mec is the electron cyclotron frequen@ypy = /4rnge?/my, — the plasma fre-
quenciesp = (i, ), voi — the equilibrium ion velocityde = (Te/4n€?ng)Y/2 — the electron De-
bye radiuspe = (Te/Mem3e) "/ — the electron Larmor radiuk? = kZ + kZ; o = k\Vog, 0w =
ky\Vie, @p = kWb (14 2Kk2 p2)/(1+ k2 p2), and the electron drift velocitieSog , Vie, Vb, are de-
scribed by the expressions:

Vo = —CEg/Bo, Vie= —(CTe/eBy)dInng/dx, Vp = —(2cTe/eBy)dInBy/dx

Dispersion relation (6) includes the equilibrium electron and ion flows perpendicular to the
magnetic field, the electron inertia and FLR (in sense of Padé approximants) effects, and the
Debye effects. This dispersion relation generalizes the earlier known dispersion relations of
Refs. [3]-[6], [8]. In addition to the dispersion relations of Refs. [3]-[6] it takes into account
the electron temperature effects (electron magnetic drift and FLR effects) and in addition to the
dispersion relation of Ref. [8] — the electron inertia and FLR effects.

A lengthy but rather straightforward analysis shows thstificientcondition of stability of
considered plasma perturbations is

<eEo 1+2k?p2 d Bz+kxa)5iv0i>{d 1+2k2p2 d

e J— nno_—._
dx 1+k3pg dx

— .—In InBZ+ <0. (7
Te  1+kZp2 dx ° Ky Cs Cs 0}_ (7)

This condition guaranties that both long-wavelength, lower-frequency and short-wavelength,

higher-frequency (of ordemy, and higher) perturbations are stable. For azimuthal perturbations
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with ky < ky and negligible inhomogeneity of the magnetic field strength this condition takes the
form which is complementary to the Simon-Hoh (S-H) instability condiiignIng < 0 [9, 10].
Neglecting the FLR effects and equilibrium ions velocity in Eq. (7) one can obtain the extended
S-H stability criterion for the inhomogeneous magnetic fiéldi +Vp) (xn — 2xg) > 0.

The generahecessary and sufficieabndition of gradient drift instability is formulated as

0% > Uy, for A <0; @®)

U1 < 62 < pp, for 0< A <1,

whered = 1— aky/k2 G, i1 = [27— 181 — A2 /(27— 181 — A2)2— 6423| /88,

c= E +—1< + Zvoi | o0=-———>"—"
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The full picture of instability is summarized in Fig. 1. The boundaries of instability region
are described by the curves = u12 — see Eq. (8). AR < 0 the instability region is located
above the curve® = uy and at 0< A < 1 — between the curves® = u; ando? = up, which
intersect at the poimt = 1. The region withh > 1 is stable.
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Figure 1:Stability diagram and contour plots of frequencies of unstable modes in the pfaie White
color indicates the stability region, the instability region is colored. Dashed curve shows the stability
boundary with no account of electron inertia; the corresponding instability region locates above this

curve. Oscillations with frequency higher thax, are shown with black color.

Now we fix the equilibrium parameters and follow the parametric car¥(el) given by pa-

rameterk,; on the stability diagram. For azimuthal modes the curve is described by the relation
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62 = ao/(1—A). With no FLR effectsx ando depend not ok, and the dependena (1)
— see black line with green circles in Fig. 1 — appears to repeat the behavior of the stability
boundary with no account of electron inert@ = 1/4(1— 1), [8]. Thus, with no account of
electron inertia the whole spectrum of perturbati@nsc (0, ) is unstable atte > 1/4; at
oo < 1/4 all modes are stable. When we take into account the inertia effects the cut off of
the short-wavelength modes occurs with the maximal posgiklg, for unstable modes de-
fined by the relatioreo /(1 — 1) = up; consequently, the growth rate of instability is limited
from above. Also the additional region of instabiljty < 62 < 1/4(1— A) near the instability
threshold (smalb) appears.

The FLR effects make the picture much more complex, since with their acooamtc de-
pend not only on equilibrium plasma state, but are also functioks of\s a consequence, the
functionc?(2) is not necessarily an increasing monotonic function and its behavior is strongly
determined by equilibrium parameters. In the example given in Fig. 1 the FLR effects totally
change the behavior af?(1): it decreases with the growth &f and the stabilization of the
short-wavelength modes takes place due to the intersectior (@f) with the lower stability
boundary,u; — see black line with red circles in Fig. 1. As one can see from Fig. 1, the fre-
guency of unstable modes naaris low in comparison with the lower-hybrid frequency. The
additional analysis shows that even small FLR effects can completely stabilize high-frequency
short wavelength modes near the instability threshold.
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